Metamath Proof Explorer


Theorem 1le3

Description: 1 is less than or equal to 3. (Contributed by David A. Wheeler, 8-Dec-2018)

Ref Expression
Assertion 1le3
|- 1 <_ 3

Proof

Step Hyp Ref Expression
1 1re
 |-  1 e. RR
2 3re
 |-  3 e. RR
3 1lt3
 |-  1 < 3
4 1 2 3 ltleii
 |-  1 <_ 3