Metamath Proof Explorer


Theorem 1p3e4

Description: 1 + 3 = 4. (Contributed by SN, 19-Nov-2025)

Ref Expression
Assertion 1p3e4
|- ( 1 + 3 ) = 4

Proof

Step Hyp Ref Expression
1 df-3
 |-  3 = ( 2 + 1 )
2 1 oveq2i
 |-  ( 1 + 3 ) = ( 1 + ( 2 + 1 ) )
3 ax-1cn
 |-  1 e. CC
4 2cn
 |-  2 e. CC
5 3 4 3 addassi
 |-  ( ( 1 + 2 ) + 1 ) = ( 1 + ( 2 + 1 ) )
6 1p2e3
 |-  ( 1 + 2 ) = 3
7 6 oveq1i
 |-  ( ( 1 + 2 ) + 1 ) = ( 3 + 1 )
8 3p1e4
 |-  ( 3 + 1 ) = 4
9 7 8 eqtri
 |-  ( ( 1 + 2 ) + 1 ) = 4
10 2 5 9 3eqtr2i
 |-  ( 1 + 3 ) = 4