Metamath Proof Explorer


Theorem 1rp

Description: 1 is a positive real. (Contributed by Jeff Hankins, 23-Nov-2008)

Ref Expression
Assertion 1rp
|- 1 e. RR+

Proof

Step Hyp Ref Expression
1 1re
 |-  1 e. RR
2 0lt1
 |-  0 < 1
3 1 2 elrpii
 |-  1 e. RR+