Description: The multiplicative identity is a left-regular element. (Contributed by Thierry Arnoux, 6-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1rrg.1 | |- .1. = ( 1r ` R ) |
|
| 1rrg.e | |- E = ( RLReg ` R ) |
||
| 1rrg.r | |- ( ph -> R e. Ring ) |
||
| Assertion | 1rrg | |- ( ph -> .1. e. E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1rrg.1 | |- .1. = ( 1r ` R ) |
|
| 2 | 1rrg.e | |- E = ( RLReg ` R ) |
|
| 3 | 1rrg.r | |- ( ph -> R e. Ring ) |
|
| 4 | eqid | |- ( Unit ` R ) = ( Unit ` R ) |
|
| 5 | 2 4 | unitrrg | |- ( R e. Ring -> ( Unit ` R ) C_ E ) |
| 6 | 4 1 | 1unit | |- ( R e. Ring -> .1. e. ( Unit ` R ) ) |
| 7 | 5 6 | sseldd | |- ( R e. Ring -> .1. e. E ) |
| 8 | 3 7 | syl | |- ( ph -> .1. e. E ) |