Metamath Proof Explorer


Theorem 1xr

Description: 1 is an extended real number. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Assertion 1xr
|- 1 e. RR*

Proof

Step Hyp Ref Expression
1 1re
 |-  1 e. RR
2 1 rexri
 |-  1 e. RR*