| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2arwcatlem2.a |
|- ( ph -> A = X ) |
| 2 |
|
2arwcatlem2.b |
|- ( ph -> B = Y ) |
| 3 |
|
2arwcatlem2.c |
|- ( ph -> C = Z ) |
| 4 |
|
2arwcatlem2.f |
|- ( ph -> ( F = .0. \/ F = .1. ) ) |
| 5 |
|
2arwcatlem2.1 |
|- ( ph -> ( .1. ( <. X , Y >. .x. Z ) .1. ) = .1. ) |
| 6 |
|
2arwcatlem2.0 |
|- ( ph -> ( .1. ( <. X , Y >. .x. Z ) .0. ) = .0. ) |
| 7 |
1 2
|
opeq12d |
|- ( ph -> <. A , B >. = <. X , Y >. ) |
| 8 |
7 3
|
oveq12d |
|- ( ph -> ( <. A , B >. .x. C ) = ( <. X , Y >. .x. Z ) ) |
| 9 |
8
|
oveqd |
|- ( ph -> ( .1. ( <. A , B >. .x. C ) F ) = ( .1. ( <. X , Y >. .x. Z ) F ) ) |
| 10 |
6
|
adantr |
|- ( ( ph /\ F = .0. ) -> ( .1. ( <. X , Y >. .x. Z ) .0. ) = .0. ) |
| 11 |
|
simpr |
|- ( ( ph /\ F = .0. ) -> F = .0. ) |
| 12 |
11
|
oveq2d |
|- ( ( ph /\ F = .0. ) -> ( .1. ( <. X , Y >. .x. Z ) F ) = ( .1. ( <. X , Y >. .x. Z ) .0. ) ) |
| 13 |
10 12 11
|
3eqtr4d |
|- ( ( ph /\ F = .0. ) -> ( .1. ( <. X , Y >. .x. Z ) F ) = F ) |
| 14 |
5
|
adantr |
|- ( ( ph /\ F = .1. ) -> ( .1. ( <. X , Y >. .x. Z ) .1. ) = .1. ) |
| 15 |
|
simpr |
|- ( ( ph /\ F = .1. ) -> F = .1. ) |
| 16 |
15
|
oveq2d |
|- ( ( ph /\ F = .1. ) -> ( .1. ( <. X , Y >. .x. Z ) F ) = ( .1. ( <. X , Y >. .x. Z ) .1. ) ) |
| 17 |
14 16 15
|
3eqtr4d |
|- ( ( ph /\ F = .1. ) -> ( .1. ( <. X , Y >. .x. Z ) F ) = F ) |
| 18 |
13 17 4
|
mpjaodan |
|- ( ph -> ( .1. ( <. X , Y >. .x. Z ) F ) = F ) |
| 19 |
9 18
|
eqtrd |
|- ( ph -> ( .1. ( <. A , B >. .x. C ) F ) = F ) |