| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2arwcat.b |
|- ( ph -> { X } = ( Base ` C ) ) |
| 2 |
|
2arwcat.h |
|- ( ph -> H = ( Hom ` C ) ) |
| 3 |
|
2arwcat.x |
|- ( ph -> .x. = ( comp ` C ) ) |
| 4 |
|
2arwcat.1 |
|- ( X H X ) = { .0. , .1. } |
| 5 |
|
2arwcat.2 |
|- ( ph -> ( .1. ( <. X , X >. .x. X ) .1. ) = .1. ) |
| 6 |
|
2arwcat.3 |
|- ( ph -> ( .1. ( <. X , X >. .x. X ) .0. ) = .0. ) |
| 7 |
|
2arwcat.4 |
|- ( ph -> ( .0. ( <. X , X >. .x. X ) .1. ) = .0. ) |
| 8 |
|
2arwcat.5 |
|- ( ph -> ( .0. ( <. X , X >. .x. X ) .0. ) e. { .0. , .1. } ) |
| 9 |
|
ovex |
|- ( .1. ( <. X , X >. .x. X ) .1. ) e. _V |
| 10 |
5 9
|
eqeltrrdi |
|- ( ph -> .1. e. _V ) |
| 11 |
|
prid2g |
|- ( .1. e. _V -> .1. e. { .0. , .1. } ) |
| 12 |
10 11
|
syl |
|- ( ph -> .1. e. { .0. , .1. } ) |
| 13 |
12 4
|
eleqtrrdi |
|- ( ph -> .1. e. ( X H X ) ) |
| 14 |
|
df-ov |
|- ( X H X ) = ( H ` <. X , X >. ) |
| 15 |
2
|
fveq1d |
|- ( ph -> ( H ` <. X , X >. ) = ( ( Hom ` C ) ` <. X , X >. ) ) |
| 16 |
14 15
|
eqtrid |
|- ( ph -> ( X H X ) = ( ( Hom ` C ) ` <. X , X >. ) ) |
| 17 |
13 16
|
eleqtrd |
|- ( ph -> .1. e. ( ( Hom ` C ) ` <. X , X >. ) ) |
| 18 |
|
elfv2ex |
|- ( .1. e. ( ( Hom ` C ) ` <. X , X >. ) -> C e. _V ) |
| 19 |
17 18
|
syl |
|- ( ph -> C e. _V ) |
| 20 |
4
|
2arwcatlem1 |
|- ( ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) <-> ( ( x e. { X } /\ y e. { X } ) /\ ( z e. { X } /\ w e. { X } ) /\ ( f e. ( x H y ) /\ g e. ( y H z ) /\ k e. ( z H w ) ) ) ) |
| 21 |
12
|
adantr |
|- ( ( ph /\ y e. { X } ) -> .1. e. { .0. , .1. } ) |
| 22 |
|
velsn |
|- ( y e. { X } <-> y = X ) |
| 23 |
|
id |
|- ( y = X -> y = X ) |
| 24 |
23 23
|
oveq12d |
|- ( y = X -> ( y H y ) = ( X H X ) ) |
| 25 |
24 4
|
eqtrdi |
|- ( y = X -> ( y H y ) = { .0. , .1. } ) |
| 26 |
22 25
|
sylbi |
|- ( y e. { X } -> ( y H y ) = { .0. , .1. } ) |
| 27 |
26
|
adantl |
|- ( ( ph /\ y e. { X } ) -> ( y H y ) = { .0. , .1. } ) |
| 28 |
21 27
|
eleqtrrd |
|- ( ( ph /\ y e. { X } ) -> .1. e. ( y H y ) ) |
| 29 |
|
simprll |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> ( x = X /\ y = X ) ) |
| 30 |
29
|
simpld |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> x = X ) |
| 31 |
29
|
simprd |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> y = X ) |
| 32 |
|
simprr1 |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> ( f = .0. \/ f = .1. ) ) |
| 33 |
5
|
adantr |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> ( .1. ( <. X , X >. .x. X ) .1. ) = .1. ) |
| 34 |
6
|
adantr |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> ( .1. ( <. X , X >. .x. X ) .0. ) = .0. ) |
| 35 |
30 31 31 32 33 34
|
2arwcatlem2 |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> ( .1. ( <. x , y >. .x. y ) f ) = f ) |
| 36 |
|
simprlr |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> ( z = X /\ w = X ) ) |
| 37 |
36
|
simpld |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> z = X ) |
| 38 |
|
simprr2 |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> ( g = .0. \/ g = .1. ) ) |
| 39 |
7
|
adantr |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> ( .0. ( <. X , X >. .x. X ) .1. ) = .0. ) |
| 40 |
31 31 37 38 33 39
|
2arwcatlem3 |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> ( g ( <. y , y >. .x. z ) .1. ) = g ) |
| 41 |
8
|
adantr |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> ( .0. ( <. X , X >. .x. X ) .0. ) e. { .0. , .1. } ) |
| 42 |
30 31 37 32 33 39 34 41 38
|
2arwcatlem4 |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> ( g ( <. x , y >. .x. z ) f ) e. { .0. , .1. } ) |
| 43 |
30 37
|
oveq12d |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> ( x H z ) = ( X H X ) ) |
| 44 |
43 4
|
eqtrdi |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> ( x H z ) = { .0. , .1. } ) |
| 45 |
42 44
|
eleqtrrd |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> ( g ( <. x , y >. .x. z ) f ) e. ( x H z ) ) |
| 46 |
6 7 8
|
2arwcatlem5 |
|- ( ph -> ( ( .0. ( <. X , X >. .x. X ) .0. ) ( <. X , X >. .x. X ) .0. ) = ( .0. ( <. X , X >. .x. X ) ( .0. ( <. X , X >. .x. X ) .0. ) ) ) |
| 47 |
46
|
ad4antr |
|- ( ( ( ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) /\ f = .0. ) /\ g = .0. ) /\ k = .0. ) -> ( ( .0. ( <. X , X >. .x. X ) .0. ) ( <. X , X >. .x. X ) .0. ) = ( .0. ( <. X , X >. .x. X ) ( .0. ( <. X , X >. .x. X ) .0. ) ) ) |
| 48 |
|
simpr |
|- ( ( ( ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) /\ f = .0. ) /\ g = .0. ) /\ k = .0. ) -> k = .0. ) |
| 49 |
|
simplr |
|- ( ( ( ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) /\ f = .0. ) /\ g = .0. ) /\ k = .0. ) -> g = .0. ) |
| 50 |
48 49
|
oveq12d |
|- ( ( ( ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) /\ f = .0. ) /\ g = .0. ) /\ k = .0. ) -> ( k ( <. X , X >. .x. X ) g ) = ( .0. ( <. X , X >. .x. X ) .0. ) ) |
| 51 |
|
simpr |
|- ( ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) /\ f = .0. ) -> f = .0. ) |
| 52 |
51
|
ad2antrr |
|- ( ( ( ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) /\ f = .0. ) /\ g = .0. ) /\ k = .0. ) -> f = .0. ) |
| 53 |
50 52
|
oveq12d |
|- ( ( ( ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) /\ f = .0. ) /\ g = .0. ) /\ k = .0. ) -> ( ( k ( <. X , X >. .x. X ) g ) ( <. X , X >. .x. X ) f ) = ( ( .0. ( <. X , X >. .x. X ) .0. ) ( <. X , X >. .x. X ) .0. ) ) |
| 54 |
49 52
|
oveq12d |
|- ( ( ( ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) /\ f = .0. ) /\ g = .0. ) /\ k = .0. ) -> ( g ( <. X , X >. .x. X ) f ) = ( .0. ( <. X , X >. .x. X ) .0. ) ) |
| 55 |
48 54
|
oveq12d |
|- ( ( ( ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) /\ f = .0. ) /\ g = .0. ) /\ k = .0. ) -> ( k ( <. X , X >. .x. X ) ( g ( <. X , X >. .x. X ) f ) ) = ( .0. ( <. X , X >. .x. X ) ( .0. ( <. X , X >. .x. X ) .0. ) ) ) |
| 56 |
47 53 55
|
3eqtr4d |
|- ( ( ( ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) /\ f = .0. ) /\ g = .0. ) /\ k = .0. ) -> ( ( k ( <. X , X >. .x. X ) g ) ( <. X , X >. .x. X ) f ) = ( k ( <. X , X >. .x. X ) ( g ( <. X , X >. .x. X ) f ) ) ) |
| 57 |
|
eqidd |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> X = X ) |
| 58 |
30 31
|
opeq12d |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> <. x , y >. = <. X , X >. ) |
| 59 |
58 37
|
oveq12d |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> ( <. x , y >. .x. z ) = ( <. X , X >. .x. X ) ) |
| 60 |
59
|
oveqd |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> ( g ( <. x , y >. .x. z ) f ) = ( g ( <. X , X >. .x. X ) f ) ) |
| 61 |
60 42
|
eqeltrrd |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> ( g ( <. X , X >. .x. X ) f ) e. { .0. , .1. } ) |
| 62 |
|
ovex |
|- ( g ( <. X , X >. .x. X ) f ) e. _V |
| 63 |
62
|
elpr |
|- ( ( g ( <. X , X >. .x. X ) f ) e. { .0. , .1. } <-> ( ( g ( <. X , X >. .x. X ) f ) = .0. \/ ( g ( <. X , X >. .x. X ) f ) = .1. ) ) |
| 64 |
61 63
|
sylib |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> ( ( g ( <. X , X >. .x. X ) f ) = .0. \/ ( g ( <. X , X >. .x. X ) f ) = .1. ) ) |
| 65 |
57 57 57 64 33 34
|
2arwcatlem2 |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> ( .1. ( <. X , X >. .x. X ) ( g ( <. X , X >. .x. X ) f ) ) = ( g ( <. X , X >. .x. X ) f ) ) |
| 66 |
65
|
ad3antrrr |
|- ( ( ( ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) /\ f = .0. ) /\ g = .0. ) /\ k = .1. ) -> ( .1. ( <. X , X >. .x. X ) ( g ( <. X , X >. .x. X ) f ) ) = ( g ( <. X , X >. .x. X ) f ) ) |
| 67 |
|
simpr |
|- ( ( ( ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) /\ f = .0. ) /\ g = .0. ) /\ k = .1. ) -> k = .1. ) |
| 68 |
67
|
oveq1d |
|- ( ( ( ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) /\ f = .0. ) /\ g = .0. ) /\ k = .1. ) -> ( k ( <. X , X >. .x. X ) ( g ( <. X , X >. .x. X ) f ) ) = ( .1. ( <. X , X >. .x. X ) ( g ( <. X , X >. .x. X ) f ) ) ) |
| 69 |
67
|
oveq1d |
|- ( ( ( ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) /\ f = .0. ) /\ g = .0. ) /\ k = .1. ) -> ( k ( <. X , X >. .x. X ) g ) = ( .1. ( <. X , X >. .x. X ) g ) ) |
| 70 |
57 57 57 38 33 34
|
2arwcatlem2 |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> ( .1. ( <. X , X >. .x. X ) g ) = g ) |
| 71 |
70
|
ad3antrrr |
|- ( ( ( ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) /\ f = .0. ) /\ g = .0. ) /\ k = .1. ) -> ( .1. ( <. X , X >. .x. X ) g ) = g ) |
| 72 |
69 71
|
eqtrd |
|- ( ( ( ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) /\ f = .0. ) /\ g = .0. ) /\ k = .1. ) -> ( k ( <. X , X >. .x. X ) g ) = g ) |
| 73 |
72
|
oveq1d |
|- ( ( ( ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) /\ f = .0. ) /\ g = .0. ) /\ k = .1. ) -> ( ( k ( <. X , X >. .x. X ) g ) ( <. X , X >. .x. X ) f ) = ( g ( <. X , X >. .x. X ) f ) ) |
| 74 |
66 68 73
|
3eqtr4rd |
|- ( ( ( ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) /\ f = .0. ) /\ g = .0. ) /\ k = .1. ) -> ( ( k ( <. X , X >. .x. X ) g ) ( <. X , X >. .x. X ) f ) = ( k ( <. X , X >. .x. X ) ( g ( <. X , X >. .x. X ) f ) ) ) |
| 75 |
|
simprr3 |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> ( k = .0. \/ k = .1. ) ) |
| 76 |
75
|
ad2antrr |
|- ( ( ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) /\ f = .0. ) /\ g = .0. ) -> ( k = .0. \/ k = .1. ) ) |
| 77 |
56 74 76
|
mpjaodan |
|- ( ( ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) /\ f = .0. ) /\ g = .0. ) -> ( ( k ( <. X , X >. .x. X ) g ) ( <. X , X >. .x. X ) f ) = ( k ( <. X , X >. .x. X ) ( g ( <. X , X >. .x. X ) f ) ) ) |
| 78 |
|
simpr |
|- ( ( ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) /\ f = .0. ) /\ g = .1. ) -> g = .1. ) |
| 79 |
78
|
oveq2d |
|- ( ( ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) /\ f = .0. ) /\ g = .1. ) -> ( k ( <. X , X >. .x. X ) g ) = ( k ( <. X , X >. .x. X ) .1. ) ) |
| 80 |
57 57 57 75 33 39
|
2arwcatlem3 |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> ( k ( <. X , X >. .x. X ) .1. ) = k ) |
| 81 |
80
|
ad2antrr |
|- ( ( ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) /\ f = .0. ) /\ g = .1. ) -> ( k ( <. X , X >. .x. X ) .1. ) = k ) |
| 82 |
79 81
|
eqtrd |
|- ( ( ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) /\ f = .0. ) /\ g = .1. ) -> ( k ( <. X , X >. .x. X ) g ) = k ) |
| 83 |
82
|
oveq1d |
|- ( ( ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) /\ f = .0. ) /\ g = .1. ) -> ( ( k ( <. X , X >. .x. X ) g ) ( <. X , X >. .x. X ) f ) = ( k ( <. X , X >. .x. X ) f ) ) |
| 84 |
78
|
oveq1d |
|- ( ( ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) /\ f = .0. ) /\ g = .1. ) -> ( g ( <. X , X >. .x. X ) f ) = ( .1. ( <. X , X >. .x. X ) f ) ) |
| 85 |
57 57 57 32 33 34
|
2arwcatlem2 |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> ( .1. ( <. X , X >. .x. X ) f ) = f ) |
| 86 |
85
|
ad2antrr |
|- ( ( ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) /\ f = .0. ) /\ g = .1. ) -> ( .1. ( <. X , X >. .x. X ) f ) = f ) |
| 87 |
84 86
|
eqtrd |
|- ( ( ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) /\ f = .0. ) /\ g = .1. ) -> ( g ( <. X , X >. .x. X ) f ) = f ) |
| 88 |
87
|
oveq2d |
|- ( ( ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) /\ f = .0. ) /\ g = .1. ) -> ( k ( <. X , X >. .x. X ) ( g ( <. X , X >. .x. X ) f ) ) = ( k ( <. X , X >. .x. X ) f ) ) |
| 89 |
83 88
|
eqtr4d |
|- ( ( ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) /\ f = .0. ) /\ g = .1. ) -> ( ( k ( <. X , X >. .x. X ) g ) ( <. X , X >. .x. X ) f ) = ( k ( <. X , X >. .x. X ) ( g ( <. X , X >. .x. X ) f ) ) ) |
| 90 |
38
|
adantr |
|- ( ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) /\ f = .0. ) -> ( g = .0. \/ g = .1. ) ) |
| 91 |
77 89 90
|
mpjaodan |
|- ( ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) /\ f = .0. ) -> ( ( k ( <. X , X >. .x. X ) g ) ( <. X , X >. .x. X ) f ) = ( k ( <. X , X >. .x. X ) ( g ( <. X , X >. .x. X ) f ) ) ) |
| 92 |
57 57 57 38 33 39 34 41 75
|
2arwcatlem4 |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> ( k ( <. X , X >. .x. X ) g ) e. { .0. , .1. } ) |
| 93 |
|
ovex |
|- ( k ( <. X , X >. .x. X ) g ) e. _V |
| 94 |
93
|
elpr |
|- ( ( k ( <. X , X >. .x. X ) g ) e. { .0. , .1. } <-> ( ( k ( <. X , X >. .x. X ) g ) = .0. \/ ( k ( <. X , X >. .x. X ) g ) = .1. ) ) |
| 95 |
92 94
|
sylib |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> ( ( k ( <. X , X >. .x. X ) g ) = .0. \/ ( k ( <. X , X >. .x. X ) g ) = .1. ) ) |
| 96 |
57 57 57 95 33 39
|
2arwcatlem3 |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> ( ( k ( <. X , X >. .x. X ) g ) ( <. X , X >. .x. X ) .1. ) = ( k ( <. X , X >. .x. X ) g ) ) |
| 97 |
96
|
adantr |
|- ( ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) /\ f = .1. ) -> ( ( k ( <. X , X >. .x. X ) g ) ( <. X , X >. .x. X ) .1. ) = ( k ( <. X , X >. .x. X ) g ) ) |
| 98 |
|
simpr |
|- ( ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) /\ f = .1. ) -> f = .1. ) |
| 99 |
98
|
oveq2d |
|- ( ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) /\ f = .1. ) -> ( ( k ( <. X , X >. .x. X ) g ) ( <. X , X >. .x. X ) f ) = ( ( k ( <. X , X >. .x. X ) g ) ( <. X , X >. .x. X ) .1. ) ) |
| 100 |
98
|
oveq2d |
|- ( ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) /\ f = .1. ) -> ( g ( <. X , X >. .x. X ) f ) = ( g ( <. X , X >. .x. X ) .1. ) ) |
| 101 |
57 57 57 38 33 39
|
2arwcatlem3 |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> ( g ( <. X , X >. .x. X ) .1. ) = g ) |
| 102 |
101
|
adantr |
|- ( ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) /\ f = .1. ) -> ( g ( <. X , X >. .x. X ) .1. ) = g ) |
| 103 |
100 102
|
eqtrd |
|- ( ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) /\ f = .1. ) -> ( g ( <. X , X >. .x. X ) f ) = g ) |
| 104 |
103
|
oveq2d |
|- ( ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) /\ f = .1. ) -> ( k ( <. X , X >. .x. X ) ( g ( <. X , X >. .x. X ) f ) ) = ( k ( <. X , X >. .x. X ) g ) ) |
| 105 |
97 99 104
|
3eqtr4d |
|- ( ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) /\ f = .1. ) -> ( ( k ( <. X , X >. .x. X ) g ) ( <. X , X >. .x. X ) f ) = ( k ( <. X , X >. .x. X ) ( g ( <. X , X >. .x. X ) f ) ) ) |
| 106 |
91 105 32
|
mpjaodan |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> ( ( k ( <. X , X >. .x. X ) g ) ( <. X , X >. .x. X ) f ) = ( k ( <. X , X >. .x. X ) ( g ( <. X , X >. .x. X ) f ) ) ) |
| 107 |
36
|
simprd |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> w = X ) |
| 108 |
58 107
|
oveq12d |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> ( <. x , y >. .x. w ) = ( <. X , X >. .x. X ) ) |
| 109 |
31 37
|
opeq12d |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> <. y , z >. = <. X , X >. ) |
| 110 |
109 107
|
oveq12d |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> ( <. y , z >. .x. w ) = ( <. X , X >. .x. X ) ) |
| 111 |
110
|
oveqd |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> ( k ( <. y , z >. .x. w ) g ) = ( k ( <. X , X >. .x. X ) g ) ) |
| 112 |
|
eqidd |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> f = f ) |
| 113 |
108 111 112
|
oveq123d |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( ( k ( <. X , X >. .x. X ) g ) ( <. X , X >. .x. X ) f ) ) |
| 114 |
30 37
|
opeq12d |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> <. x , z >. = <. X , X >. ) |
| 115 |
114 107
|
oveq12d |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> ( <. x , z >. .x. w ) = ( <. X , X >. .x. X ) ) |
| 116 |
|
eqidd |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> k = k ) |
| 117 |
115 116 60
|
oveq123d |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) = ( k ( <. X , X >. .x. X ) ( g ( <. X , X >. .x. X ) f ) ) ) |
| 118 |
106 113 117
|
3eqtr4d |
|- ( ( ph /\ ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) -> ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) ) |
| 119 |
1 2 3 19 20 28 35 40 45 118
|
iscatd2 |
|- ( ph -> ( C e. Cat /\ ( Id ` C ) = ( y e. { X } |-> .1. ) ) ) |