| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2arwcat.b |
⊢ ( 𝜑 → { 𝑋 } = ( Base ‘ 𝐶 ) ) |
| 2 |
|
2arwcat.h |
⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝐶 ) ) |
| 3 |
|
2arwcat.x |
⊢ ( 𝜑 → · = ( comp ‘ 𝐶 ) ) |
| 4 |
|
2arwcat.1 |
⊢ ( 𝑋 𝐻 𝑋 ) = { 0 , 1 } |
| 5 |
|
2arwcat.2 |
⊢ ( 𝜑 → ( 1 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 1 ) = 1 ) |
| 6 |
|
2arwcat.3 |
⊢ ( 𝜑 → ( 1 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 0 ) = 0 ) |
| 7 |
|
2arwcat.4 |
⊢ ( 𝜑 → ( 0 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 1 ) = 0 ) |
| 8 |
|
2arwcat.5 |
⊢ ( 𝜑 → ( 0 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 0 ) ∈ { 0 , 1 } ) |
| 9 |
|
ovex |
⊢ ( 1 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 1 ) ∈ V |
| 10 |
5 9
|
eqeltrrdi |
⊢ ( 𝜑 → 1 ∈ V ) |
| 11 |
|
prid2g |
⊢ ( 1 ∈ V → 1 ∈ { 0 , 1 } ) |
| 12 |
10 11
|
syl |
⊢ ( 𝜑 → 1 ∈ { 0 , 1 } ) |
| 13 |
12 4
|
eleqtrrdi |
⊢ ( 𝜑 → 1 ∈ ( 𝑋 𝐻 𝑋 ) ) |
| 14 |
|
df-ov |
⊢ ( 𝑋 𝐻 𝑋 ) = ( 𝐻 ‘ 〈 𝑋 , 𝑋 〉 ) |
| 15 |
2
|
fveq1d |
⊢ ( 𝜑 → ( 𝐻 ‘ 〈 𝑋 , 𝑋 〉 ) = ( ( Hom ‘ 𝐶 ) ‘ 〈 𝑋 , 𝑋 〉 ) ) |
| 16 |
14 15
|
eqtrid |
⊢ ( 𝜑 → ( 𝑋 𝐻 𝑋 ) = ( ( Hom ‘ 𝐶 ) ‘ 〈 𝑋 , 𝑋 〉 ) ) |
| 17 |
13 16
|
eleqtrd |
⊢ ( 𝜑 → 1 ∈ ( ( Hom ‘ 𝐶 ) ‘ 〈 𝑋 , 𝑋 〉 ) ) |
| 18 |
|
elfv2ex |
⊢ ( 1 ∈ ( ( Hom ‘ 𝐶 ) ‘ 〈 𝑋 , 𝑋 〉 ) → 𝐶 ∈ V ) |
| 19 |
17 18
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ V ) |
| 20 |
4
|
2arwcatlem1 |
⊢ ( ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ↔ ( ( 𝑥 ∈ { 𝑋 } ∧ 𝑦 ∈ { 𝑋 } ) ∧ ( 𝑧 ∈ { 𝑋 } ∧ 𝑤 ∈ { 𝑋 } ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) |
| 21 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ { 𝑋 } ) → 1 ∈ { 0 , 1 } ) |
| 22 |
|
velsn |
⊢ ( 𝑦 ∈ { 𝑋 } ↔ 𝑦 = 𝑋 ) |
| 23 |
|
id |
⊢ ( 𝑦 = 𝑋 → 𝑦 = 𝑋 ) |
| 24 |
23 23
|
oveq12d |
⊢ ( 𝑦 = 𝑋 → ( 𝑦 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑋 ) ) |
| 25 |
24 4
|
eqtrdi |
⊢ ( 𝑦 = 𝑋 → ( 𝑦 𝐻 𝑦 ) = { 0 , 1 } ) |
| 26 |
22 25
|
sylbi |
⊢ ( 𝑦 ∈ { 𝑋 } → ( 𝑦 𝐻 𝑦 ) = { 0 , 1 } ) |
| 27 |
26
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ { 𝑋 } ) → ( 𝑦 𝐻 𝑦 ) = { 0 , 1 } ) |
| 28 |
21 27
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ { 𝑋 } ) → 1 ∈ ( 𝑦 𝐻 𝑦 ) ) |
| 29 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ) |
| 30 |
29
|
simpld |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → 𝑥 = 𝑋 ) |
| 31 |
29
|
simprd |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → 𝑦 = 𝑋 ) |
| 32 |
|
simprr1 |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → ( 𝑓 = 0 ∨ 𝑓 = 1 ) ) |
| 33 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → ( 1 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 1 ) = 1 ) |
| 34 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → ( 1 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 0 ) = 0 ) |
| 35 |
30 31 31 32 33 34
|
2arwcatlem2 |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → ( 1 ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) 𝑓 ) = 𝑓 ) |
| 36 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) |
| 37 |
36
|
simpld |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → 𝑧 = 𝑋 ) |
| 38 |
|
simprr2 |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → ( 𝑔 = 0 ∨ 𝑔 = 1 ) ) |
| 39 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → ( 0 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 1 ) = 0 ) |
| 40 |
31 31 37 38 33 39
|
2arwcatlem3 |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → ( 𝑔 ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) 1 ) = 𝑔 ) |
| 41 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → ( 0 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 0 ) ∈ { 0 , 1 } ) |
| 42 |
30 31 37 32 33 39 34 41 38
|
2arwcatlem4 |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ { 0 , 1 } ) |
| 43 |
30 37
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → ( 𝑥 𝐻 𝑧 ) = ( 𝑋 𝐻 𝑋 ) ) |
| 44 |
43 4
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → ( 𝑥 𝐻 𝑧 ) = { 0 , 1 } ) |
| 45 |
42 44
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) |
| 46 |
6 7 8
|
2arwcatlem5 |
⊢ ( 𝜑 → ( ( 0 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 0 ) ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 0 ) = ( 0 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ( 0 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 0 ) ) ) |
| 47 |
46
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 0 ) → ( ( 0 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 0 ) ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 0 ) = ( 0 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ( 0 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 0 ) ) ) |
| 48 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 0 ) → 𝑘 = 0 ) |
| 49 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 0 ) → 𝑔 = 0 ) |
| 50 |
48 49
|
oveq12d |
⊢ ( ( ( ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 0 ) → ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = ( 0 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 0 ) ) |
| 51 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) ∧ 𝑓 = 0 ) → 𝑓 = 0 ) |
| 52 |
51
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 0 ) → 𝑓 = 0 ) |
| 53 |
50 52
|
oveq12d |
⊢ ( ( ( ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 0 ) → ( ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = ( ( 0 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 0 ) ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 0 ) ) |
| 54 |
49 52
|
oveq12d |
⊢ ( ( ( ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 0 ) → ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = ( 0 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 0 ) ) |
| 55 |
48 54
|
oveq12d |
⊢ ( ( ( ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 0 ) → ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) ) = ( 0 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ( 0 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 0 ) ) ) |
| 56 |
47 53 55
|
3eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 0 ) → ( ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) ) ) |
| 57 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → 𝑋 = 𝑋 ) |
| 58 |
30 31
|
opeq12d |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → 〈 𝑥 , 𝑦 〉 = 〈 𝑋 , 𝑋 〉 ) |
| 59 |
58 37
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) = ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ) |
| 60 |
59
|
oveqd |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) ) |
| 61 |
60 42
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) ∈ { 0 , 1 } ) |
| 62 |
|
ovex |
⊢ ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) ∈ V |
| 63 |
62
|
elpr |
⊢ ( ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) ∈ { 0 , 1 } ↔ ( ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 0 ∨ ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 1 ) ) |
| 64 |
61 63
|
sylib |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → ( ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 0 ∨ ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 1 ) ) |
| 65 |
57 57 57 64 33 34
|
2arwcatlem2 |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → ( 1 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) ) = ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) ) |
| 66 |
65
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 1 ) → ( 1 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) ) = ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) ) |
| 67 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 1 ) → 𝑘 = 1 ) |
| 68 |
67
|
oveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 1 ) → ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) ) = ( 1 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) ) ) |
| 69 |
67
|
oveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 1 ) → ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = ( 1 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) ) |
| 70 |
57 57 57 38 33 34
|
2arwcatlem2 |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → ( 1 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 𝑔 ) |
| 71 |
70
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 1 ) → ( 1 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 𝑔 ) |
| 72 |
69 71
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 1 ) → ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 𝑔 ) |
| 73 |
72
|
oveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 1 ) → ( ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) ) |
| 74 |
66 68 73
|
3eqtr4rd |
⊢ ( ( ( ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 1 ) → ( ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) ) ) |
| 75 |
|
simprr3 |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) |
| 76 |
75
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) → ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) |
| 77 |
56 74 76
|
mpjaodan |
⊢ ( ( ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) → ( ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) ) ) |
| 78 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) ∧ 𝑓 = 0 ) ∧ 𝑔 = 1 ) → 𝑔 = 1 ) |
| 79 |
78
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) ∧ 𝑓 = 0 ) ∧ 𝑔 = 1 ) → ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 1 ) ) |
| 80 |
57 57 57 75 33 39
|
2arwcatlem3 |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 1 ) = 𝑘 ) |
| 81 |
80
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) ∧ 𝑓 = 0 ) ∧ 𝑔 = 1 ) → ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 1 ) = 𝑘 ) |
| 82 |
79 81
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) ∧ 𝑓 = 0 ) ∧ 𝑔 = 1 ) → ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 𝑘 ) |
| 83 |
82
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) ∧ 𝑓 = 0 ) ∧ 𝑔 = 1 ) → ( ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) ) |
| 84 |
78
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) ∧ 𝑓 = 0 ) ∧ 𝑔 = 1 ) → ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = ( 1 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) ) |
| 85 |
57 57 57 32 33 34
|
2arwcatlem2 |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → ( 1 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ) |
| 86 |
85
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) ∧ 𝑓 = 0 ) ∧ 𝑔 = 1 ) → ( 1 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ) |
| 87 |
84 86
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) ∧ 𝑓 = 0 ) ∧ 𝑔 = 1 ) → ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ) |
| 88 |
87
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) ∧ 𝑓 = 0 ) ∧ 𝑔 = 1 ) → ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) ) = ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) ) |
| 89 |
83 88
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) ∧ 𝑓 = 0 ) ∧ 𝑔 = 1 ) → ( ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) ) ) |
| 90 |
38
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) ∧ 𝑓 = 0 ) → ( 𝑔 = 0 ∨ 𝑔 = 1 ) ) |
| 91 |
77 89 90
|
mpjaodan |
⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) ∧ 𝑓 = 0 ) → ( ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) ) ) |
| 92 |
57 57 57 38 33 39 34 41 75
|
2arwcatlem4 |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) ∈ { 0 , 1 } ) |
| 93 |
|
ovex |
⊢ ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) ∈ V |
| 94 |
93
|
elpr |
⊢ ( ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) ∈ { 0 , 1 } ↔ ( ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 0 ∨ ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 1 ) ) |
| 95 |
92 94
|
sylib |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → ( ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 0 ∨ ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 1 ) ) |
| 96 |
57 57 57 95 33 39
|
2arwcatlem3 |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → ( ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 1 ) = ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) ) |
| 97 |
96
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) ∧ 𝑓 = 1 ) → ( ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 1 ) = ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) ) |
| 98 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) ∧ 𝑓 = 1 ) → 𝑓 = 1 ) |
| 99 |
98
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) ∧ 𝑓 = 1 ) → ( ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = ( ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 1 ) ) |
| 100 |
98
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) ∧ 𝑓 = 1 ) → ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 1 ) ) |
| 101 |
57 57 57 38 33 39
|
2arwcatlem3 |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 1 ) = 𝑔 ) |
| 102 |
101
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) ∧ 𝑓 = 1 ) → ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 1 ) = 𝑔 ) |
| 103 |
100 102
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) ∧ 𝑓 = 1 ) → ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑔 ) |
| 104 |
103
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) ∧ 𝑓 = 1 ) → ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) ) = ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) ) |
| 105 |
97 99 104
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) ∧ 𝑓 = 1 ) → ( ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) ) ) |
| 106 |
91 105 32
|
mpjaodan |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → ( ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) ) ) |
| 107 |
36
|
simprd |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → 𝑤 = 𝑋 ) |
| 108 |
58 107
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) = ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ) |
| 109 |
31 37
|
opeq12d |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → 〈 𝑦 , 𝑧 〉 = 〈 𝑋 , 𝑋 〉 ) |
| 110 |
109 107
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) = ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ) |
| 111 |
110
|
oveqd |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) = ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) ) |
| 112 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → 𝑓 = 𝑓 ) |
| 113 |
108 111 112
|
oveq123d |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) ) |
| 114 |
30 37
|
opeq12d |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → 〈 𝑥 , 𝑧 〉 = 〈 𝑋 , 𝑋 〉 ) |
| 115 |
114 107
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) = ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ) |
| 116 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → 𝑘 = 𝑘 ) |
| 117 |
115 116 60
|
oveq123d |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) = ( 𝑘 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) ) ) |
| 118 |
106 113 117
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) → ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) |
| 119 |
1 2 3 19 20 28 35 40 45 118
|
iscatd2 |
⊢ ( 𝜑 → ( 𝐶 ∈ Cat ∧ ( Id ‘ 𝐶 ) = ( 𝑦 ∈ { 𝑋 } ↦ 1 ) ) ) |