| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2arwcat.b |
|
| 2 |
|
2arwcat.h |
|
| 3 |
|
2arwcat.x |
|
| 4 |
|
2arwcat.1 |
|
| 5 |
|
2arwcat.2 |
|
| 6 |
|
2arwcat.3 |
|
| 7 |
|
2arwcat.4 |
|
| 8 |
|
2arwcat.5 |
|
| 9 |
|
ovex |
|
| 10 |
5 9
|
eqeltrrdi |
|
| 11 |
|
prid2g |
|
| 12 |
10 11
|
syl |
|
| 13 |
12 4
|
eleqtrrdi |
|
| 14 |
|
df-ov |
|
| 15 |
2
|
fveq1d |
|
| 16 |
14 15
|
eqtrid |
|
| 17 |
13 16
|
eleqtrd |
|
| 18 |
|
elfv2ex |
|
| 19 |
17 18
|
syl |
|
| 20 |
4
|
2arwcatlem1 |
|
| 21 |
12
|
adantr |
|
| 22 |
|
velsn |
|
| 23 |
|
id |
|
| 24 |
23 23
|
oveq12d |
|
| 25 |
24 4
|
eqtrdi |
|
| 26 |
22 25
|
sylbi |
|
| 27 |
26
|
adantl |
|
| 28 |
21 27
|
eleqtrrd |
|
| 29 |
|
simprll |
|
| 30 |
29
|
simpld |
|
| 31 |
29
|
simprd |
|
| 32 |
|
simprr1 |
|
| 33 |
5
|
adantr |
|
| 34 |
6
|
adantr |
|
| 35 |
30 31 31 32 33 34
|
2arwcatlem2 |
|
| 36 |
|
simprlr |
|
| 37 |
36
|
simpld |
|
| 38 |
|
simprr2 |
|
| 39 |
7
|
adantr |
|
| 40 |
31 31 37 38 33 39
|
2arwcatlem3 |
|
| 41 |
8
|
adantr |
|
| 42 |
30 31 37 32 33 39 34 41 38
|
2arwcatlem4 |
|
| 43 |
30 37
|
oveq12d |
|
| 44 |
43 4
|
eqtrdi |
|
| 45 |
42 44
|
eleqtrrd |
|
| 46 |
6 7 8
|
2arwcatlem5 |
|
| 47 |
46
|
ad4antr |
|
| 48 |
|
simpr |
|
| 49 |
|
simplr |
|
| 50 |
48 49
|
oveq12d |
|
| 51 |
|
simpr |
|
| 52 |
51
|
ad2antrr |
|
| 53 |
50 52
|
oveq12d |
|
| 54 |
49 52
|
oveq12d |
|
| 55 |
48 54
|
oveq12d |
|
| 56 |
47 53 55
|
3eqtr4d |
|
| 57 |
|
eqidd |
|
| 58 |
30 31
|
opeq12d |
|
| 59 |
58 37
|
oveq12d |
|
| 60 |
59
|
oveqd |
|
| 61 |
60 42
|
eqeltrrd |
|
| 62 |
|
ovex |
|
| 63 |
62
|
elpr |
|
| 64 |
61 63
|
sylib |
|
| 65 |
57 57 57 64 33 34
|
2arwcatlem2 |
|
| 66 |
65
|
ad3antrrr |
|
| 67 |
|
simpr |
|
| 68 |
67
|
oveq1d |
|
| 69 |
67
|
oveq1d |
|
| 70 |
57 57 57 38 33 34
|
2arwcatlem2 |
|
| 71 |
70
|
ad3antrrr |
|
| 72 |
69 71
|
eqtrd |
|
| 73 |
72
|
oveq1d |
|
| 74 |
66 68 73
|
3eqtr4rd |
|
| 75 |
|
simprr3 |
|
| 76 |
75
|
ad2antrr |
|
| 77 |
56 74 76
|
mpjaodan |
|
| 78 |
|
simpr |
|
| 79 |
78
|
oveq2d |
|
| 80 |
57 57 57 75 33 39
|
2arwcatlem3 |
|
| 81 |
80
|
ad2antrr |
|
| 82 |
79 81
|
eqtrd |
|
| 83 |
82
|
oveq1d |
|
| 84 |
78
|
oveq1d |
|
| 85 |
57 57 57 32 33 34
|
2arwcatlem2 |
|
| 86 |
85
|
ad2antrr |
|
| 87 |
84 86
|
eqtrd |
|
| 88 |
87
|
oveq2d |
|
| 89 |
83 88
|
eqtr4d |
|
| 90 |
38
|
adantr |
|
| 91 |
77 89 90
|
mpjaodan |
|
| 92 |
57 57 57 38 33 39 34 41 75
|
2arwcatlem4 |
|
| 93 |
|
ovex |
|
| 94 |
93
|
elpr |
|
| 95 |
92 94
|
sylib |
|
| 96 |
57 57 57 95 33 39
|
2arwcatlem3 |
|
| 97 |
96
|
adantr |
|
| 98 |
|
simpr |
|
| 99 |
98
|
oveq2d |
|
| 100 |
98
|
oveq2d |
|
| 101 |
57 57 57 38 33 39
|
2arwcatlem3 |
|
| 102 |
101
|
adantr |
|
| 103 |
100 102
|
eqtrd |
|
| 104 |
103
|
oveq2d |
|
| 105 |
97 99 104
|
3eqtr4d |
|
| 106 |
91 105 32
|
mpjaodan |
|
| 107 |
36
|
simprd |
|
| 108 |
58 107
|
oveq12d |
|
| 109 |
31 37
|
opeq12d |
|
| 110 |
109 107
|
oveq12d |
|
| 111 |
110
|
oveqd |
|
| 112 |
|
eqidd |
|
| 113 |
108 111 112
|
oveq123d |
|
| 114 |
30 37
|
opeq12d |
|
| 115 |
114 107
|
oveq12d |
|
| 116 |
|
eqidd |
|
| 117 |
115 116 60
|
oveq123d |
|
| 118 |
106 113 117
|
3eqtr4d |
|
| 119 |
1 2 3 19 20 28 35 40 45 118
|
iscatd2 |
|