| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2arwcatlem2.a |
|
| 2 |
|
2arwcatlem2.b |
|
| 3 |
|
2arwcatlem2.c |
|
| 4 |
|
2arwcatlem2.f |
|
| 5 |
|
2arwcatlem2.1 |
|
| 6 |
|
2arwcatlem3.0 |
|
| 7 |
|
2arwcatlem4.0 |
|
| 8 |
|
2arwcatlem4.00 |
|
| 9 |
|
2arwcatlem4.g |
|
| 10 |
1 2
|
opeq12d |
|
| 11 |
10 3
|
oveq12d |
|
| 12 |
11
|
oveqd |
|
| 13 |
|
simpr |
|
| 14 |
|
simplr |
|
| 15 |
13 14
|
oveq12d |
|
| 16 |
8
|
ad2antrr |
|
| 17 |
15 16
|
eqeltrd |
|
| 18 |
|
simpr |
|
| 19 |
|
simplr |
|
| 20 |
18 19
|
oveq12d |
|
| 21 |
7
|
ad2antrr |
|
| 22 |
20 21
|
eqtrd |
|
| 23 |
|
ovex |
|
| 24 |
7 23
|
eqeltrrdi |
|
| 25 |
|
prid1g |
|
| 26 |
24 25
|
syl |
|
| 27 |
26
|
ad2antrr |
|
| 28 |
22 27
|
eqeltrd |
|
| 29 |
9
|
adantr |
|
| 30 |
17 28 29
|
mpjaodan |
|
| 31 |
|
simpr |
|
| 32 |
|
simplr |
|
| 33 |
31 32
|
oveq12d |
|
| 34 |
6
|
ad2antrr |
|
| 35 |
33 34
|
eqtrd |
|
| 36 |
26
|
ad2antrr |
|
| 37 |
35 36
|
eqeltrd |
|
| 38 |
|
simpr |
|
| 39 |
|
simplr |
|
| 40 |
38 39
|
oveq12d |
|
| 41 |
5
|
ad2antrr |
|
| 42 |
40 41
|
eqtrd |
|
| 43 |
|
ovex |
|
| 44 |
5 43
|
eqeltrrdi |
|
| 45 |
|
prid2g |
|
| 46 |
44 45
|
syl |
|
| 47 |
46
|
ad2antrr |
|
| 48 |
42 47
|
eqeltrd |
|
| 49 |
9
|
adantr |
|
| 50 |
37 48 49
|
mpjaodan |
|
| 51 |
30 50 4
|
mpjaodan |
|
| 52 |
12 51
|
eqeltrd |
|