| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2arwcatlem2.a |
|- ( ph -> A = X ) |
| 2 |
|
2arwcatlem2.b |
|- ( ph -> B = Y ) |
| 3 |
|
2arwcatlem2.c |
|- ( ph -> C = Z ) |
| 4 |
|
2arwcatlem2.f |
|- ( ph -> ( F = .0. \/ F = .1. ) ) |
| 5 |
|
2arwcatlem2.1 |
|- ( ph -> ( .1. ( <. X , Y >. .x. Z ) .1. ) = .1. ) |
| 6 |
|
2arwcatlem3.0 |
|- ( ph -> ( .0. ( <. X , Y >. .x. Z ) .1. ) = .0. ) |
| 7 |
|
2arwcatlem4.0 |
|- ( ph -> ( .1. ( <. X , Y >. .x. Z ) .0. ) = .0. ) |
| 8 |
|
2arwcatlem4.00 |
|- ( ph -> ( .0. ( <. X , Y >. .x. Z ) .0. ) e. { .0. , .1. } ) |
| 9 |
|
2arwcatlem4.g |
|- ( ph -> ( G = .0. \/ G = .1. ) ) |
| 10 |
1 2
|
opeq12d |
|- ( ph -> <. A , B >. = <. X , Y >. ) |
| 11 |
10 3
|
oveq12d |
|- ( ph -> ( <. A , B >. .x. C ) = ( <. X , Y >. .x. Z ) ) |
| 12 |
11
|
oveqd |
|- ( ph -> ( G ( <. A , B >. .x. C ) F ) = ( G ( <. X , Y >. .x. Z ) F ) ) |
| 13 |
|
simpr |
|- ( ( ( ph /\ F = .0. ) /\ G = .0. ) -> G = .0. ) |
| 14 |
|
simplr |
|- ( ( ( ph /\ F = .0. ) /\ G = .0. ) -> F = .0. ) |
| 15 |
13 14
|
oveq12d |
|- ( ( ( ph /\ F = .0. ) /\ G = .0. ) -> ( G ( <. X , Y >. .x. Z ) F ) = ( .0. ( <. X , Y >. .x. Z ) .0. ) ) |
| 16 |
8
|
ad2antrr |
|- ( ( ( ph /\ F = .0. ) /\ G = .0. ) -> ( .0. ( <. X , Y >. .x. Z ) .0. ) e. { .0. , .1. } ) |
| 17 |
15 16
|
eqeltrd |
|- ( ( ( ph /\ F = .0. ) /\ G = .0. ) -> ( G ( <. X , Y >. .x. Z ) F ) e. { .0. , .1. } ) |
| 18 |
|
simpr |
|- ( ( ( ph /\ F = .0. ) /\ G = .1. ) -> G = .1. ) |
| 19 |
|
simplr |
|- ( ( ( ph /\ F = .0. ) /\ G = .1. ) -> F = .0. ) |
| 20 |
18 19
|
oveq12d |
|- ( ( ( ph /\ F = .0. ) /\ G = .1. ) -> ( G ( <. X , Y >. .x. Z ) F ) = ( .1. ( <. X , Y >. .x. Z ) .0. ) ) |
| 21 |
7
|
ad2antrr |
|- ( ( ( ph /\ F = .0. ) /\ G = .1. ) -> ( .1. ( <. X , Y >. .x. Z ) .0. ) = .0. ) |
| 22 |
20 21
|
eqtrd |
|- ( ( ( ph /\ F = .0. ) /\ G = .1. ) -> ( G ( <. X , Y >. .x. Z ) F ) = .0. ) |
| 23 |
|
ovex |
|- ( .1. ( <. X , Y >. .x. Z ) .0. ) e. _V |
| 24 |
7 23
|
eqeltrrdi |
|- ( ph -> .0. e. _V ) |
| 25 |
|
prid1g |
|- ( .0. e. _V -> .0. e. { .0. , .1. } ) |
| 26 |
24 25
|
syl |
|- ( ph -> .0. e. { .0. , .1. } ) |
| 27 |
26
|
ad2antrr |
|- ( ( ( ph /\ F = .0. ) /\ G = .1. ) -> .0. e. { .0. , .1. } ) |
| 28 |
22 27
|
eqeltrd |
|- ( ( ( ph /\ F = .0. ) /\ G = .1. ) -> ( G ( <. X , Y >. .x. Z ) F ) e. { .0. , .1. } ) |
| 29 |
9
|
adantr |
|- ( ( ph /\ F = .0. ) -> ( G = .0. \/ G = .1. ) ) |
| 30 |
17 28 29
|
mpjaodan |
|- ( ( ph /\ F = .0. ) -> ( G ( <. X , Y >. .x. Z ) F ) e. { .0. , .1. } ) |
| 31 |
|
simpr |
|- ( ( ( ph /\ F = .1. ) /\ G = .0. ) -> G = .0. ) |
| 32 |
|
simplr |
|- ( ( ( ph /\ F = .1. ) /\ G = .0. ) -> F = .1. ) |
| 33 |
31 32
|
oveq12d |
|- ( ( ( ph /\ F = .1. ) /\ G = .0. ) -> ( G ( <. X , Y >. .x. Z ) F ) = ( .0. ( <. X , Y >. .x. Z ) .1. ) ) |
| 34 |
6
|
ad2antrr |
|- ( ( ( ph /\ F = .1. ) /\ G = .0. ) -> ( .0. ( <. X , Y >. .x. Z ) .1. ) = .0. ) |
| 35 |
33 34
|
eqtrd |
|- ( ( ( ph /\ F = .1. ) /\ G = .0. ) -> ( G ( <. X , Y >. .x. Z ) F ) = .0. ) |
| 36 |
26
|
ad2antrr |
|- ( ( ( ph /\ F = .1. ) /\ G = .0. ) -> .0. e. { .0. , .1. } ) |
| 37 |
35 36
|
eqeltrd |
|- ( ( ( ph /\ F = .1. ) /\ G = .0. ) -> ( G ( <. X , Y >. .x. Z ) F ) e. { .0. , .1. } ) |
| 38 |
|
simpr |
|- ( ( ( ph /\ F = .1. ) /\ G = .1. ) -> G = .1. ) |
| 39 |
|
simplr |
|- ( ( ( ph /\ F = .1. ) /\ G = .1. ) -> F = .1. ) |
| 40 |
38 39
|
oveq12d |
|- ( ( ( ph /\ F = .1. ) /\ G = .1. ) -> ( G ( <. X , Y >. .x. Z ) F ) = ( .1. ( <. X , Y >. .x. Z ) .1. ) ) |
| 41 |
5
|
ad2antrr |
|- ( ( ( ph /\ F = .1. ) /\ G = .1. ) -> ( .1. ( <. X , Y >. .x. Z ) .1. ) = .1. ) |
| 42 |
40 41
|
eqtrd |
|- ( ( ( ph /\ F = .1. ) /\ G = .1. ) -> ( G ( <. X , Y >. .x. Z ) F ) = .1. ) |
| 43 |
|
ovex |
|- ( .1. ( <. X , Y >. .x. Z ) .1. ) e. _V |
| 44 |
5 43
|
eqeltrrdi |
|- ( ph -> .1. e. _V ) |
| 45 |
|
prid2g |
|- ( .1. e. _V -> .1. e. { .0. , .1. } ) |
| 46 |
44 45
|
syl |
|- ( ph -> .1. e. { .0. , .1. } ) |
| 47 |
46
|
ad2antrr |
|- ( ( ( ph /\ F = .1. ) /\ G = .1. ) -> .1. e. { .0. , .1. } ) |
| 48 |
42 47
|
eqeltrd |
|- ( ( ( ph /\ F = .1. ) /\ G = .1. ) -> ( G ( <. X , Y >. .x. Z ) F ) e. { .0. , .1. } ) |
| 49 |
9
|
adantr |
|- ( ( ph /\ F = .1. ) -> ( G = .0. \/ G = .1. ) ) |
| 50 |
37 48 49
|
mpjaodan |
|- ( ( ph /\ F = .1. ) -> ( G ( <. X , Y >. .x. Z ) F ) e. { .0. , .1. } ) |
| 51 |
30 50 4
|
mpjaodan |
|- ( ph -> ( G ( <. X , Y >. .x. Z ) F ) e. { .0. , .1. } ) |
| 52 |
12 51
|
eqeltrd |
|- ( ph -> ( G ( <. A , B >. .x. C ) F ) e. { .0. , .1. } ) |