| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2arwcatlem2.a |
⊢ ( 𝜑 → 𝐴 = 𝑋 ) |
| 2 |
|
2arwcatlem2.b |
⊢ ( 𝜑 → 𝐵 = 𝑌 ) |
| 3 |
|
2arwcatlem2.c |
⊢ ( 𝜑 → 𝐶 = 𝑍 ) |
| 4 |
|
2arwcatlem2.f |
⊢ ( 𝜑 → ( 𝐹 = 0 ∨ 𝐹 = 1 ) ) |
| 5 |
|
2arwcatlem2.1 |
⊢ ( 𝜑 → ( 1 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 1 ) = 1 ) |
| 6 |
|
2arwcatlem3.0 |
⊢ ( 𝜑 → ( 0 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 1 ) = 0 ) |
| 7 |
|
2arwcatlem4.0 |
⊢ ( 𝜑 → ( 1 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 0 ) = 0 ) |
| 8 |
|
2arwcatlem4.00 |
⊢ ( 𝜑 → ( 0 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 0 ) ∈ { 0 , 1 } ) |
| 9 |
|
2arwcatlem4.g |
⊢ ( 𝜑 → ( 𝐺 = 0 ∨ 𝐺 = 1 ) ) |
| 10 |
1 2
|
opeq12d |
⊢ ( 𝜑 → 〈 𝐴 , 𝐵 〉 = 〈 𝑋 , 𝑌 〉 ) |
| 11 |
10 3
|
oveq12d |
⊢ ( 𝜑 → ( 〈 𝐴 , 𝐵 〉 · 𝐶 ) = ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) ) |
| 12 |
11
|
oveqd |
⊢ ( 𝜑 → ( 𝐺 ( 〈 𝐴 , 𝐵 〉 · 𝐶 ) 𝐹 ) = ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) |
| 13 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐹 = 0 ) ∧ 𝐺 = 0 ) → 𝐺 = 0 ) |
| 14 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐹 = 0 ) ∧ 𝐺 = 0 ) → 𝐹 = 0 ) |
| 15 |
13 14
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝐹 = 0 ) ∧ 𝐺 = 0 ) → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) = ( 0 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 0 ) ) |
| 16 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 = 0 ) ∧ 𝐺 = 0 ) → ( 0 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 0 ) ∈ { 0 , 1 } ) |
| 17 |
15 16
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝐹 = 0 ) ∧ 𝐺 = 0 ) → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ∈ { 0 , 1 } ) |
| 18 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐹 = 0 ) ∧ 𝐺 = 1 ) → 𝐺 = 1 ) |
| 19 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐹 = 0 ) ∧ 𝐺 = 1 ) → 𝐹 = 0 ) |
| 20 |
18 19
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝐹 = 0 ) ∧ 𝐺 = 1 ) → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) = ( 1 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 0 ) ) |
| 21 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 = 0 ) ∧ 𝐺 = 1 ) → ( 1 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 0 ) = 0 ) |
| 22 |
20 21
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝐹 = 0 ) ∧ 𝐺 = 1 ) → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) = 0 ) |
| 23 |
|
ovex |
⊢ ( 1 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 0 ) ∈ V |
| 24 |
7 23
|
eqeltrrdi |
⊢ ( 𝜑 → 0 ∈ V ) |
| 25 |
|
prid1g |
⊢ ( 0 ∈ V → 0 ∈ { 0 , 1 } ) |
| 26 |
24 25
|
syl |
⊢ ( 𝜑 → 0 ∈ { 0 , 1 } ) |
| 27 |
26
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 = 0 ) ∧ 𝐺 = 1 ) → 0 ∈ { 0 , 1 } ) |
| 28 |
22 27
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝐹 = 0 ) ∧ 𝐺 = 1 ) → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ∈ { 0 , 1 } ) |
| 29 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 = 0 ) → ( 𝐺 = 0 ∨ 𝐺 = 1 ) ) |
| 30 |
17 28 29
|
mpjaodan |
⊢ ( ( 𝜑 ∧ 𝐹 = 0 ) → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ∈ { 0 , 1 } ) |
| 31 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐹 = 1 ) ∧ 𝐺 = 0 ) → 𝐺 = 0 ) |
| 32 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐹 = 1 ) ∧ 𝐺 = 0 ) → 𝐹 = 1 ) |
| 33 |
31 32
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝐹 = 1 ) ∧ 𝐺 = 0 ) → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) = ( 0 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 1 ) ) |
| 34 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 = 1 ) ∧ 𝐺 = 0 ) → ( 0 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 1 ) = 0 ) |
| 35 |
33 34
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝐹 = 1 ) ∧ 𝐺 = 0 ) → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) = 0 ) |
| 36 |
26
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 = 1 ) ∧ 𝐺 = 0 ) → 0 ∈ { 0 , 1 } ) |
| 37 |
35 36
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝐹 = 1 ) ∧ 𝐺 = 0 ) → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ∈ { 0 , 1 } ) |
| 38 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐹 = 1 ) ∧ 𝐺 = 1 ) → 𝐺 = 1 ) |
| 39 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐹 = 1 ) ∧ 𝐺 = 1 ) → 𝐹 = 1 ) |
| 40 |
38 39
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝐹 = 1 ) ∧ 𝐺 = 1 ) → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) = ( 1 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 1 ) ) |
| 41 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 = 1 ) ∧ 𝐺 = 1 ) → ( 1 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 1 ) = 1 ) |
| 42 |
40 41
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝐹 = 1 ) ∧ 𝐺 = 1 ) → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) = 1 ) |
| 43 |
|
ovex |
⊢ ( 1 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 1 ) ∈ V |
| 44 |
5 43
|
eqeltrrdi |
⊢ ( 𝜑 → 1 ∈ V ) |
| 45 |
|
prid2g |
⊢ ( 1 ∈ V → 1 ∈ { 0 , 1 } ) |
| 46 |
44 45
|
syl |
⊢ ( 𝜑 → 1 ∈ { 0 , 1 } ) |
| 47 |
46
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 = 1 ) ∧ 𝐺 = 1 ) → 1 ∈ { 0 , 1 } ) |
| 48 |
42 47
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝐹 = 1 ) ∧ 𝐺 = 1 ) → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ∈ { 0 , 1 } ) |
| 49 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 = 1 ) → ( 𝐺 = 0 ∨ 𝐺 = 1 ) ) |
| 50 |
37 48 49
|
mpjaodan |
⊢ ( ( 𝜑 ∧ 𝐹 = 1 ) → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ∈ { 0 , 1 } ) |
| 51 |
30 50 4
|
mpjaodan |
⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ∈ { 0 , 1 } ) |
| 52 |
12 51
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐺 ( 〈 𝐴 , 𝐵 〉 · 𝐶 ) 𝐹 ) ∈ { 0 , 1 } ) |