| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2arwcatlem5.1 |
⊢ ( 𝜑 → ( 1 · 0 ) = 0 ) |
| 2 |
|
2arwcatlem5.2 |
⊢ ( 𝜑 → ( 0 · 1 ) = 0 ) |
| 3 |
|
2arwcatlem5.3 |
⊢ ( 𝜑 → ( 0 · 0 ) ∈ { 0 , 1 } ) |
| 4 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 0 · 0 ) = 0 ) → ( 0 · 0 ) = 0 ) |
| 5 |
4
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 0 · 0 ) = 0 ) → ( ( 0 · 0 ) · 0 ) = ( 0 · 0 ) ) |
| 6 |
4
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 0 · 0 ) = 0 ) → ( 0 · ( 0 · 0 ) ) = ( 0 · 0 ) ) |
| 7 |
5 6
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 0 · 0 ) = 0 ) → ( ( 0 · 0 ) · 0 ) = ( 0 · ( 0 · 0 ) ) ) |
| 8 |
1 2
|
eqtr4d |
⊢ ( 𝜑 → ( 1 · 0 ) = ( 0 · 1 ) ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 0 · 0 ) = 1 ) → ( 1 · 0 ) = ( 0 · 1 ) ) |
| 10 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 0 · 0 ) = 1 ) → ( 0 · 0 ) = 1 ) |
| 11 |
10
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 0 · 0 ) = 1 ) → ( ( 0 · 0 ) · 0 ) = ( 1 · 0 ) ) |
| 12 |
10
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 0 · 0 ) = 1 ) → ( 0 · ( 0 · 0 ) ) = ( 0 · 1 ) ) |
| 13 |
9 11 12
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 0 · 0 ) = 1 ) → ( ( 0 · 0 ) · 0 ) = ( 0 · ( 0 · 0 ) ) ) |
| 14 |
|
ovex |
⊢ ( 0 · 0 ) ∈ V |
| 15 |
14
|
elpr |
⊢ ( ( 0 · 0 ) ∈ { 0 , 1 } ↔ ( ( 0 · 0 ) = 0 ∨ ( 0 · 0 ) = 1 ) ) |
| 16 |
3 15
|
sylib |
⊢ ( 𝜑 → ( ( 0 · 0 ) = 0 ∨ ( 0 · 0 ) = 1 ) ) |
| 17 |
7 13 16
|
mpjaodan |
⊢ ( 𝜑 → ( ( 0 · 0 ) · 0 ) = ( 0 · ( 0 · 0 ) ) ) |