Metamath Proof Explorer


Theorem 2arwcatlem1

Description: Lemma for 2arwcat . (Contributed by Zhi Wang, 5-Nov-2025)

Ref Expression
Hypothesis 2arwcatlem1.x ( 𝑋 𝐻 𝑋 ) = { 0 , 1 }
Assertion 2arwcatlem1 ( ( ( ( 𝑥 = 𝑋𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0𝑓 = 1 ) ∧ ( 𝑔 = 0𝑔 = 1 ) ∧ ( 𝑘 = 0𝑘 = 1 ) ) ) ↔ ( ( 𝑥 ∈ { 𝑋 } ∧ 𝑦 ∈ { 𝑋 } ) ∧ ( 𝑧 ∈ { 𝑋 } ∧ 𝑤 ∈ { 𝑋 } ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) )

Proof

Step Hyp Ref Expression
1 2arwcatlem1.x ( 𝑋 𝐻 𝑋 ) = { 0 , 1 }
2 df-3an ( ( ( 𝑥 ∈ { 𝑋 } ∧ 𝑦 ∈ { 𝑋 } ) ∧ ( 𝑧 ∈ { 𝑋 } ∧ 𝑤 ∈ { 𝑋 } ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ↔ ( ( ( 𝑥 ∈ { 𝑋 } ∧ 𝑦 ∈ { 𝑋 } ) ∧ ( 𝑧 ∈ { 𝑋 } ∧ 𝑤 ∈ { 𝑋 } ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) )
3 velsn ( 𝑥 ∈ { 𝑋 } ↔ 𝑥 = 𝑋 )
4 velsn ( 𝑦 ∈ { 𝑋 } ↔ 𝑦 = 𝑋 )
5 3 4 anbi12i ( ( 𝑥 ∈ { 𝑋 } ∧ 𝑦 ∈ { 𝑋 } ) ↔ ( 𝑥 = 𝑋𝑦 = 𝑋 ) )
6 velsn ( 𝑧 ∈ { 𝑋 } ↔ 𝑧 = 𝑋 )
7 velsn ( 𝑤 ∈ { 𝑋 } ↔ 𝑤 = 𝑋 )
8 6 7 anbi12i ( ( 𝑧 ∈ { 𝑋 } ∧ 𝑤 ∈ { 𝑋 } ) ↔ ( 𝑧 = 𝑋𝑤 = 𝑋 ) )
9 5 8 anbi12i ( ( ( 𝑥 ∈ { 𝑋 } ∧ 𝑦 ∈ { 𝑋 } ) ∧ ( 𝑧 ∈ { 𝑋 } ∧ 𝑤 ∈ { 𝑋 } ) ) ↔ ( ( 𝑥 = 𝑋𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋𝑤 = 𝑋 ) ) )
10 9 anbi1i ( ( ( ( 𝑥 ∈ { 𝑋 } ∧ 𝑦 ∈ { 𝑋 } ) ∧ ( 𝑧 ∈ { 𝑋 } ∧ 𝑤 ∈ { 𝑋 } ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ↔ ( ( ( 𝑥 = 𝑋𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋𝑤 = 𝑋 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) )
11 simpll ( ( ( 𝑥 = 𝑋𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋𝑤 = 𝑋 ) ) → 𝑥 = 𝑋 )
12 simplr ( ( ( 𝑥 = 𝑋𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋𝑤 = 𝑋 ) ) → 𝑦 = 𝑋 )
13 11 12 oveq12d ( ( ( 𝑥 = 𝑋𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋𝑤 = 𝑋 ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑋 ) )
14 13 1 eqtrdi ( ( ( 𝑥 = 𝑋𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋𝑤 = 𝑋 ) ) → ( 𝑥 𝐻 𝑦 ) = { 0 , 1 } )
15 14 eleq2d ( ( ( 𝑥 = 𝑋𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋𝑤 = 𝑋 ) ) → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ 𝑓 ∈ { 0 , 1 } ) )
16 simprl ( ( ( 𝑥 = 𝑋𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋𝑤 = 𝑋 ) ) → 𝑧 = 𝑋 )
17 12 16 oveq12d ( ( ( 𝑥 = 𝑋𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋𝑤 = 𝑋 ) ) → ( 𝑦 𝐻 𝑧 ) = ( 𝑋 𝐻 𝑋 ) )
18 17 1 eqtrdi ( ( ( 𝑥 = 𝑋𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋𝑤 = 𝑋 ) ) → ( 𝑦 𝐻 𝑧 ) = { 0 , 1 } )
19 18 eleq2d ( ( ( 𝑥 = 𝑋𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋𝑤 = 𝑋 ) ) → ( 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ↔ 𝑔 ∈ { 0 , 1 } ) )
20 simprr ( ( ( 𝑥 = 𝑋𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋𝑤 = 𝑋 ) ) → 𝑤 = 𝑋 )
21 16 20 oveq12d ( ( ( 𝑥 = 𝑋𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋𝑤 = 𝑋 ) ) → ( 𝑧 𝐻 𝑤 ) = ( 𝑋 𝐻 𝑋 ) )
22 21 1 eqtrdi ( ( ( 𝑥 = 𝑋𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋𝑤 = 𝑋 ) ) → ( 𝑧 𝐻 𝑤 ) = { 0 , 1 } )
23 22 eleq2d ( ( ( 𝑥 = 𝑋𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋𝑤 = 𝑋 ) ) → ( 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ↔ 𝑘 ∈ { 0 , 1 } ) )
24 15 19 23 3anbi123d ( ( ( 𝑥 = 𝑋𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋𝑤 = 𝑋 ) ) → ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ↔ ( 𝑓 ∈ { 0 , 1 } ∧ 𝑔 ∈ { 0 , 1 } ∧ 𝑘 ∈ { 0 , 1 } ) ) )
25 vex 𝑓 ∈ V
26 25 elpr ( 𝑓 ∈ { 0 , 1 } ↔ ( 𝑓 = 0𝑓 = 1 ) )
27 vex 𝑔 ∈ V
28 27 elpr ( 𝑔 ∈ { 0 , 1 } ↔ ( 𝑔 = 0𝑔 = 1 ) )
29 vex 𝑘 ∈ V
30 29 elpr ( 𝑘 ∈ { 0 , 1 } ↔ ( 𝑘 = 0𝑘 = 1 ) )
31 26 28 30 3anbi123i ( ( 𝑓 ∈ { 0 , 1 } ∧ 𝑔 ∈ { 0 , 1 } ∧ 𝑘 ∈ { 0 , 1 } ) ↔ ( ( 𝑓 = 0𝑓 = 1 ) ∧ ( 𝑔 = 0𝑔 = 1 ) ∧ ( 𝑘 = 0𝑘 = 1 ) ) )
32 24 31 bitrdi ( ( ( 𝑥 = 𝑋𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋𝑤 = 𝑋 ) ) → ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ↔ ( ( 𝑓 = 0𝑓 = 1 ) ∧ ( 𝑔 = 0𝑔 = 1 ) ∧ ( 𝑘 = 0𝑘 = 1 ) ) ) )
33 32 pm5.32i ( ( ( ( 𝑥 = 𝑋𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋𝑤 = 𝑋 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ↔ ( ( ( 𝑥 = 𝑋𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0𝑓 = 1 ) ∧ ( 𝑔 = 0𝑔 = 1 ) ∧ ( 𝑘 = 0𝑘 = 1 ) ) ) )
34 2 10 33 3bitrri ( ( ( ( 𝑥 = 𝑋𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0𝑓 = 1 ) ∧ ( 𝑔 = 0𝑔 = 1 ) ∧ ( 𝑘 = 0𝑘 = 1 ) ) ) ↔ ( ( 𝑥 ∈ { 𝑋 } ∧ 𝑦 ∈ { 𝑋 } ) ∧ ( 𝑧 ∈ { 𝑋 } ∧ 𝑤 ∈ { 𝑋 } ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) )