| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2arwcatlem1.x |
⊢ ( 𝑋 𝐻 𝑋 ) = { 0 , 1 } |
| 2 |
|
df-3an |
⊢ ( ( ( 𝑥 ∈ { 𝑋 } ∧ 𝑦 ∈ { 𝑋 } ) ∧ ( 𝑧 ∈ { 𝑋 } ∧ 𝑤 ∈ { 𝑋 } ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ↔ ( ( ( 𝑥 ∈ { 𝑋 } ∧ 𝑦 ∈ { 𝑋 } ) ∧ ( 𝑧 ∈ { 𝑋 } ∧ 𝑤 ∈ { 𝑋 } ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) |
| 3 |
|
velsn |
⊢ ( 𝑥 ∈ { 𝑋 } ↔ 𝑥 = 𝑋 ) |
| 4 |
|
velsn |
⊢ ( 𝑦 ∈ { 𝑋 } ↔ 𝑦 = 𝑋 ) |
| 5 |
3 4
|
anbi12i |
⊢ ( ( 𝑥 ∈ { 𝑋 } ∧ 𝑦 ∈ { 𝑋 } ) ↔ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ) |
| 6 |
|
velsn |
⊢ ( 𝑧 ∈ { 𝑋 } ↔ 𝑧 = 𝑋 ) |
| 7 |
|
velsn |
⊢ ( 𝑤 ∈ { 𝑋 } ↔ 𝑤 = 𝑋 ) |
| 8 |
6 7
|
anbi12i |
⊢ ( ( 𝑧 ∈ { 𝑋 } ∧ 𝑤 ∈ { 𝑋 } ) ↔ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) |
| 9 |
5 8
|
anbi12i |
⊢ ( ( ( 𝑥 ∈ { 𝑋 } ∧ 𝑦 ∈ { 𝑋 } ) ∧ ( 𝑧 ∈ { 𝑋 } ∧ 𝑤 ∈ { 𝑋 } ) ) ↔ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ) |
| 10 |
9
|
anbi1i |
⊢ ( ( ( ( 𝑥 ∈ { 𝑋 } ∧ 𝑦 ∈ { 𝑋 } ) ∧ ( 𝑧 ∈ { 𝑋 } ∧ 𝑤 ∈ { 𝑋 } ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ↔ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) |
| 11 |
|
simpll |
⊢ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) → 𝑥 = 𝑋 ) |
| 12 |
|
simplr |
⊢ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) → 𝑦 = 𝑋 ) |
| 13 |
11 12
|
oveq12d |
⊢ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑋 ) ) |
| 14 |
13 1
|
eqtrdi |
⊢ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) → ( 𝑥 𝐻 𝑦 ) = { 0 , 1 } ) |
| 15 |
14
|
eleq2d |
⊢ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ 𝑓 ∈ { 0 , 1 } ) ) |
| 16 |
|
simprl |
⊢ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) → 𝑧 = 𝑋 ) |
| 17 |
12 16
|
oveq12d |
⊢ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) → ( 𝑦 𝐻 𝑧 ) = ( 𝑋 𝐻 𝑋 ) ) |
| 18 |
17 1
|
eqtrdi |
⊢ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) → ( 𝑦 𝐻 𝑧 ) = { 0 , 1 } ) |
| 19 |
18
|
eleq2d |
⊢ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) → ( 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ↔ 𝑔 ∈ { 0 , 1 } ) ) |
| 20 |
|
simprr |
⊢ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) → 𝑤 = 𝑋 ) |
| 21 |
16 20
|
oveq12d |
⊢ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) → ( 𝑧 𝐻 𝑤 ) = ( 𝑋 𝐻 𝑋 ) ) |
| 22 |
21 1
|
eqtrdi |
⊢ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) → ( 𝑧 𝐻 𝑤 ) = { 0 , 1 } ) |
| 23 |
22
|
eleq2d |
⊢ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) → ( 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ↔ 𝑘 ∈ { 0 , 1 } ) ) |
| 24 |
15 19 23
|
3anbi123d |
⊢ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) → ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ↔ ( 𝑓 ∈ { 0 , 1 } ∧ 𝑔 ∈ { 0 , 1 } ∧ 𝑘 ∈ { 0 , 1 } ) ) ) |
| 25 |
|
vex |
⊢ 𝑓 ∈ V |
| 26 |
25
|
elpr |
⊢ ( 𝑓 ∈ { 0 , 1 } ↔ ( 𝑓 = 0 ∨ 𝑓 = 1 ) ) |
| 27 |
|
vex |
⊢ 𝑔 ∈ V |
| 28 |
27
|
elpr |
⊢ ( 𝑔 ∈ { 0 , 1 } ↔ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ) |
| 29 |
|
vex |
⊢ 𝑘 ∈ V |
| 30 |
29
|
elpr |
⊢ ( 𝑘 ∈ { 0 , 1 } ↔ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) |
| 31 |
26 28 30
|
3anbi123i |
⊢ ( ( 𝑓 ∈ { 0 , 1 } ∧ 𝑔 ∈ { 0 , 1 } ∧ 𝑘 ∈ { 0 , 1 } ) ↔ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) |
| 32 |
24 31
|
bitrdi |
⊢ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) → ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ↔ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) |
| 33 |
32
|
pm5.32i |
⊢ ( ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ↔ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ) |
| 34 |
2 10 33
|
3bitrri |
⊢ ( ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑋 ) ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑋 ) ) ∧ ( ( 𝑓 = 0 ∨ 𝑓 = 1 ) ∧ ( 𝑔 = 0 ∨ 𝑔 = 1 ) ∧ ( 𝑘 = 0 ∨ 𝑘 = 1 ) ) ) ↔ ( ( 𝑥 ∈ { 𝑋 } ∧ 𝑦 ∈ { 𝑋 } ) ∧ ( 𝑧 ∈ { 𝑋 } ∧ 𝑤 ∈ { 𝑋 } ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) |