Metamath Proof Explorer


Theorem 2arwcatlem1

Description: Lemma for 2arwcat . (Contributed by Zhi Wang, 5-Nov-2025)

Ref Expression
Hypothesis 2arwcatlem1.x
|- ( X H X ) = { .0. , .1. }
Assertion 2arwcatlem1
|- ( ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) <-> ( ( x e. { X } /\ y e. { X } ) /\ ( z e. { X } /\ w e. { X } ) /\ ( f e. ( x H y ) /\ g e. ( y H z ) /\ k e. ( z H w ) ) ) )

Proof

Step Hyp Ref Expression
1 2arwcatlem1.x
 |-  ( X H X ) = { .0. , .1. }
2 df-3an
 |-  ( ( ( x e. { X } /\ y e. { X } ) /\ ( z e. { X } /\ w e. { X } ) /\ ( f e. ( x H y ) /\ g e. ( y H z ) /\ k e. ( z H w ) ) ) <-> ( ( ( x e. { X } /\ y e. { X } ) /\ ( z e. { X } /\ w e. { X } ) ) /\ ( f e. ( x H y ) /\ g e. ( y H z ) /\ k e. ( z H w ) ) ) )
3 velsn
 |-  ( x e. { X } <-> x = X )
4 velsn
 |-  ( y e. { X } <-> y = X )
5 3 4 anbi12i
 |-  ( ( x e. { X } /\ y e. { X } ) <-> ( x = X /\ y = X ) )
6 velsn
 |-  ( z e. { X } <-> z = X )
7 velsn
 |-  ( w e. { X } <-> w = X )
8 6 7 anbi12i
 |-  ( ( z e. { X } /\ w e. { X } ) <-> ( z = X /\ w = X ) )
9 5 8 anbi12i
 |-  ( ( ( x e. { X } /\ y e. { X } ) /\ ( z e. { X } /\ w e. { X } ) ) <-> ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) )
10 9 anbi1i
 |-  ( ( ( ( x e. { X } /\ y e. { X } ) /\ ( z e. { X } /\ w e. { X } ) ) /\ ( f e. ( x H y ) /\ g e. ( y H z ) /\ k e. ( z H w ) ) ) <-> ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( f e. ( x H y ) /\ g e. ( y H z ) /\ k e. ( z H w ) ) ) )
11 simpll
 |-  ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) -> x = X )
12 simplr
 |-  ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) -> y = X )
13 11 12 oveq12d
 |-  ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) -> ( x H y ) = ( X H X ) )
14 13 1 eqtrdi
 |-  ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) -> ( x H y ) = { .0. , .1. } )
15 14 eleq2d
 |-  ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) -> ( f e. ( x H y ) <-> f e. { .0. , .1. } ) )
16 simprl
 |-  ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) -> z = X )
17 12 16 oveq12d
 |-  ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) -> ( y H z ) = ( X H X ) )
18 17 1 eqtrdi
 |-  ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) -> ( y H z ) = { .0. , .1. } )
19 18 eleq2d
 |-  ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) -> ( g e. ( y H z ) <-> g e. { .0. , .1. } ) )
20 simprr
 |-  ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) -> w = X )
21 16 20 oveq12d
 |-  ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) -> ( z H w ) = ( X H X ) )
22 21 1 eqtrdi
 |-  ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) -> ( z H w ) = { .0. , .1. } )
23 22 eleq2d
 |-  ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) -> ( k e. ( z H w ) <-> k e. { .0. , .1. } ) )
24 15 19 23 3anbi123d
 |-  ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) -> ( ( f e. ( x H y ) /\ g e. ( y H z ) /\ k e. ( z H w ) ) <-> ( f e. { .0. , .1. } /\ g e. { .0. , .1. } /\ k e. { .0. , .1. } ) ) )
25 vex
 |-  f e. _V
26 25 elpr
 |-  ( f e. { .0. , .1. } <-> ( f = .0. \/ f = .1. ) )
27 vex
 |-  g e. _V
28 27 elpr
 |-  ( g e. { .0. , .1. } <-> ( g = .0. \/ g = .1. ) )
29 vex
 |-  k e. _V
30 29 elpr
 |-  ( k e. { .0. , .1. } <-> ( k = .0. \/ k = .1. ) )
31 26 28 30 3anbi123i
 |-  ( ( f e. { .0. , .1. } /\ g e. { .0. , .1. } /\ k e. { .0. , .1. } ) <-> ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) )
32 24 31 bitrdi
 |-  ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) -> ( ( f e. ( x H y ) /\ g e. ( y H z ) /\ k e. ( z H w ) ) <-> ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) )
33 32 pm5.32i
 |-  ( ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( f e. ( x H y ) /\ g e. ( y H z ) /\ k e. ( z H w ) ) ) <-> ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) )
34 2 10 33 3bitrri
 |-  ( ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) <-> ( ( x e. { X } /\ y e. { X } ) /\ ( z e. { X } /\ w e. { X } ) /\ ( f e. ( x H y ) /\ g e. ( y H z ) /\ k e. ( z H w ) ) ) )