| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2arwcatlem1.x |
|- ( X H X ) = { .0. , .1. } |
| 2 |
|
df-3an |
|- ( ( ( x e. { X } /\ y e. { X } ) /\ ( z e. { X } /\ w e. { X } ) /\ ( f e. ( x H y ) /\ g e. ( y H z ) /\ k e. ( z H w ) ) ) <-> ( ( ( x e. { X } /\ y e. { X } ) /\ ( z e. { X } /\ w e. { X } ) ) /\ ( f e. ( x H y ) /\ g e. ( y H z ) /\ k e. ( z H w ) ) ) ) |
| 3 |
|
velsn |
|- ( x e. { X } <-> x = X ) |
| 4 |
|
velsn |
|- ( y e. { X } <-> y = X ) |
| 5 |
3 4
|
anbi12i |
|- ( ( x e. { X } /\ y e. { X } ) <-> ( x = X /\ y = X ) ) |
| 6 |
|
velsn |
|- ( z e. { X } <-> z = X ) |
| 7 |
|
velsn |
|- ( w e. { X } <-> w = X ) |
| 8 |
6 7
|
anbi12i |
|- ( ( z e. { X } /\ w e. { X } ) <-> ( z = X /\ w = X ) ) |
| 9 |
5 8
|
anbi12i |
|- ( ( ( x e. { X } /\ y e. { X } ) /\ ( z e. { X } /\ w e. { X } ) ) <-> ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) ) |
| 10 |
9
|
anbi1i |
|- ( ( ( ( x e. { X } /\ y e. { X } ) /\ ( z e. { X } /\ w e. { X } ) ) /\ ( f e. ( x H y ) /\ g e. ( y H z ) /\ k e. ( z H w ) ) ) <-> ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( f e. ( x H y ) /\ g e. ( y H z ) /\ k e. ( z H w ) ) ) ) |
| 11 |
|
simpll |
|- ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) -> x = X ) |
| 12 |
|
simplr |
|- ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) -> y = X ) |
| 13 |
11 12
|
oveq12d |
|- ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) -> ( x H y ) = ( X H X ) ) |
| 14 |
13 1
|
eqtrdi |
|- ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) -> ( x H y ) = { .0. , .1. } ) |
| 15 |
14
|
eleq2d |
|- ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) -> ( f e. ( x H y ) <-> f e. { .0. , .1. } ) ) |
| 16 |
|
simprl |
|- ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) -> z = X ) |
| 17 |
12 16
|
oveq12d |
|- ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) -> ( y H z ) = ( X H X ) ) |
| 18 |
17 1
|
eqtrdi |
|- ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) -> ( y H z ) = { .0. , .1. } ) |
| 19 |
18
|
eleq2d |
|- ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) -> ( g e. ( y H z ) <-> g e. { .0. , .1. } ) ) |
| 20 |
|
simprr |
|- ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) -> w = X ) |
| 21 |
16 20
|
oveq12d |
|- ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) -> ( z H w ) = ( X H X ) ) |
| 22 |
21 1
|
eqtrdi |
|- ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) -> ( z H w ) = { .0. , .1. } ) |
| 23 |
22
|
eleq2d |
|- ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) -> ( k e. ( z H w ) <-> k e. { .0. , .1. } ) ) |
| 24 |
15 19 23
|
3anbi123d |
|- ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) -> ( ( f e. ( x H y ) /\ g e. ( y H z ) /\ k e. ( z H w ) ) <-> ( f e. { .0. , .1. } /\ g e. { .0. , .1. } /\ k e. { .0. , .1. } ) ) ) |
| 25 |
|
vex |
|- f e. _V |
| 26 |
25
|
elpr |
|- ( f e. { .0. , .1. } <-> ( f = .0. \/ f = .1. ) ) |
| 27 |
|
vex |
|- g e. _V |
| 28 |
27
|
elpr |
|- ( g e. { .0. , .1. } <-> ( g = .0. \/ g = .1. ) ) |
| 29 |
|
vex |
|- k e. _V |
| 30 |
29
|
elpr |
|- ( k e. { .0. , .1. } <-> ( k = .0. \/ k = .1. ) ) |
| 31 |
26 28 30
|
3anbi123i |
|- ( ( f e. { .0. , .1. } /\ g e. { .0. , .1. } /\ k e. { .0. , .1. } ) <-> ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) |
| 32 |
24 31
|
bitrdi |
|- ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) -> ( ( f e. ( x H y ) /\ g e. ( y H z ) /\ k e. ( z H w ) ) <-> ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) |
| 33 |
32
|
pm5.32i |
|- ( ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( f e. ( x H y ) /\ g e. ( y H z ) /\ k e. ( z H w ) ) ) <-> ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) ) |
| 34 |
2 10 33
|
3bitrri |
|- ( ( ( ( x = X /\ y = X ) /\ ( z = X /\ w = X ) ) /\ ( ( f = .0. \/ f = .1. ) /\ ( g = .0. \/ g = .1. ) /\ ( k = .0. \/ k = .1. ) ) ) <-> ( ( x e. { X } /\ y e. { X } ) /\ ( z e. { X } /\ w e. { X } ) /\ ( f e. ( x H y ) /\ g e. ( y H z ) /\ k e. ( z H w ) ) ) ) |