| Step |
Hyp |
Ref |
Expression |
| 1 |
|
incat.c |
|- C = { <. ( Base ` ndx ) , { X } >. , <. ( Hom ` ndx ) , { <. X , X , H >. } >. , <. ( comp ` ndx ) , { <. <. X , X >. , X , .x. >. } >. } |
| 2 |
|
incat.h |
|- H = { F , G } |
| 3 |
|
incat.x |
|- .x. = ( f e. H , g e. H |-> ( f i^i g ) ) |
| 4 |
|
snex |
|- { X } e. _V |
| 5 |
1 4
|
catbas |
|- { X } = ( Base ` C ) |
| 6 |
5
|
a1i |
|- ( ( F C_ G /\ G e. V ) -> { X } = ( Base ` C ) ) |
| 7 |
|
snex |
|- { <. X , X , H >. } e. _V |
| 8 |
1 7
|
cathomfval |
|- { <. X , X , H >. } = ( Hom ` C ) |
| 9 |
8
|
a1i |
|- ( ( F C_ G /\ G e. V ) -> { <. X , X , H >. } = ( Hom ` C ) ) |
| 10 |
|
snex |
|- { <. <. X , X >. , X , .x. >. } e. _V |
| 11 |
1 10
|
catcofval |
|- { <. <. X , X >. , X , .x. >. } = ( comp ` C ) |
| 12 |
11
|
a1i |
|- ( ( F C_ G /\ G e. V ) -> { <. <. X , X >. , X , .x. >. } = ( comp ` C ) ) |
| 13 |
|
prex |
|- { F , G } e. _V |
| 14 |
2 13
|
eqeltri |
|- H e. _V |
| 15 |
14
|
ovsn2 |
|- ( X { <. X , X , H >. } X ) = H |
| 16 |
15 2
|
eqtri |
|- ( X { <. X , X , H >. } X ) = { F , G } |
| 17 |
14 14
|
mpoex |
|- ( f e. H , g e. H |-> ( f i^i g ) ) e. _V |
| 18 |
3 17
|
eqeltri |
|- .x. e. _V |
| 19 |
18
|
ovsn2 |
|- ( <. X , X >. { <. <. X , X >. , X , .x. >. } X ) = .x. |
| 20 |
19 3
|
eqtri |
|- ( <. X , X >. { <. <. X , X >. , X , .x. >. } X ) = ( f e. H , g e. H |-> ( f i^i g ) ) |
| 21 |
20
|
a1i |
|- ( ( F C_ G /\ G e. V ) -> ( <. X , X >. { <. <. X , X >. , X , .x. >. } X ) = ( f e. H , g e. H |-> ( f i^i g ) ) ) |
| 22 |
|
ineq12 |
|- ( ( f = G /\ g = G ) -> ( f i^i g ) = ( G i^i G ) ) |
| 23 |
|
inidm |
|- ( G i^i G ) = G |
| 24 |
22 23
|
eqtrdi |
|- ( ( f = G /\ g = G ) -> ( f i^i g ) = G ) |
| 25 |
24
|
adantl |
|- ( ( ( F C_ G /\ G e. V ) /\ ( f = G /\ g = G ) ) -> ( f i^i g ) = G ) |
| 26 |
|
prid2g |
|- ( G e. V -> G e. { F , G } ) |
| 27 |
26 2
|
eleqtrrdi |
|- ( G e. V -> G e. H ) |
| 28 |
27
|
adantl |
|- ( ( F C_ G /\ G e. V ) -> G e. H ) |
| 29 |
21 25 28 28 28
|
ovmpod |
|- ( ( F C_ G /\ G e. V ) -> ( G ( <. X , X >. { <. <. X , X >. , X , .x. >. } X ) G ) = G ) |
| 30 |
|
ineq12 |
|- ( ( f = G /\ g = F ) -> ( f i^i g ) = ( G i^i F ) ) |
| 31 |
|
sseqin2 |
|- ( F C_ G <-> ( G i^i F ) = F ) |
| 32 |
31
|
biimpi |
|- ( F C_ G -> ( G i^i F ) = F ) |
| 33 |
32
|
adantr |
|- ( ( F C_ G /\ G e. V ) -> ( G i^i F ) = F ) |
| 34 |
30 33
|
sylan9eqr |
|- ( ( ( F C_ G /\ G e. V ) /\ ( f = G /\ g = F ) ) -> ( f i^i g ) = F ) |
| 35 |
|
ssexg |
|- ( ( F C_ G /\ G e. V ) -> F e. _V ) |
| 36 |
|
prid1g |
|- ( F e. _V -> F e. { F , G } ) |
| 37 |
35 36
|
syl |
|- ( ( F C_ G /\ G e. V ) -> F e. { F , G } ) |
| 38 |
37 2
|
eleqtrrdi |
|- ( ( F C_ G /\ G e. V ) -> F e. H ) |
| 39 |
21 34 28 38 38
|
ovmpod |
|- ( ( F C_ G /\ G e. V ) -> ( G ( <. X , X >. { <. <. X , X >. , X , .x. >. } X ) F ) = F ) |
| 40 |
|
ineq12 |
|- ( ( f = F /\ g = G ) -> ( f i^i g ) = ( F i^i G ) ) |
| 41 |
|
dfss2 |
|- ( F C_ G <-> ( F i^i G ) = F ) |
| 42 |
41
|
biimpi |
|- ( F C_ G -> ( F i^i G ) = F ) |
| 43 |
42
|
adantr |
|- ( ( F C_ G /\ G e. V ) -> ( F i^i G ) = F ) |
| 44 |
40 43
|
sylan9eqr |
|- ( ( ( F C_ G /\ G e. V ) /\ ( f = F /\ g = G ) ) -> ( f i^i g ) = F ) |
| 45 |
21 44 38 28 38
|
ovmpod |
|- ( ( F C_ G /\ G e. V ) -> ( F ( <. X , X >. { <. <. X , X >. , X , .x. >. } X ) G ) = F ) |
| 46 |
|
ineq12 |
|- ( ( f = F /\ g = F ) -> ( f i^i g ) = ( F i^i F ) ) |
| 47 |
|
inidm |
|- ( F i^i F ) = F |
| 48 |
46 47
|
eqtrdi |
|- ( ( f = F /\ g = F ) -> ( f i^i g ) = F ) |
| 49 |
48
|
adantl |
|- ( ( ( F C_ G /\ G e. V ) /\ ( f = F /\ g = F ) ) -> ( f i^i g ) = F ) |
| 50 |
21 49 38 38 38
|
ovmpod |
|- ( ( F C_ G /\ G e. V ) -> ( F ( <. X , X >. { <. <. X , X >. , X , .x. >. } X ) F ) = F ) |
| 51 |
50 37
|
eqeltrd |
|- ( ( F C_ G /\ G e. V ) -> ( F ( <. X , X >. { <. <. X , X >. , X , .x. >. } X ) F ) e. { F , G } ) |
| 52 |
6 9 12 16 29 39 45 51
|
2arwcat |
|- ( ( F C_ G /\ G e. V ) -> ( C e. Cat /\ ( Id ` C ) = ( y e. { X } |-> G ) ) ) |