| Step |
Hyp |
Ref |
Expression |
| 1 |
|
setc1onsubc.c |
|- C = { <. ( Base ` ndx ) , { (/) } >. , <. ( Hom ` ndx ) , { <. (/) , (/) , 2o >. } >. , <. ( comp ` ndx ) , { <. <. (/) , (/) >. , (/) , .x. >. } >. } |
| 2 |
|
setc1onsubc.x |
|- .x. = ( f e. 2o , g e. 2o |-> ( f i^i g ) ) |
| 3 |
|
setc1onsubc.e |
|- E = ( SetCat ` 1o ) |
| 4 |
|
setc1onsubc.j |
|- J = ( Homf ` E ) |
| 5 |
|
setc1onsubc.s |
|- S = 1o |
| 6 |
|
setc1onsubc.h |
|- H = ( Homf ` C ) |
| 7 |
|
setc1onsubc.i |
|- .1. = ( Id ` C ) |
| 8 |
|
setc1onsubc.d |
|- D = ( C |`cat J ) |
| 9 |
|
0ss |
|- (/) C_ 1o |
| 10 |
|
1oex |
|- 1o e. _V |
| 11 |
|
df2o3 |
|- 2o = { (/) , 1o } |
| 12 |
1 11 2
|
incat |
|- ( ( (/) C_ 1o /\ 1o e. _V ) -> ( C e. Cat /\ ( Id ` C ) = ( y e. { (/) } |-> 1o ) ) ) |
| 13 |
9 10 12
|
mp2an |
|- ( C e. Cat /\ ( Id ` C ) = ( y e. { (/) } |-> 1o ) ) |
| 14 |
13
|
simpli |
|- C e. Cat |
| 15 |
3
|
setc1obas |
|- 1o = ( Base ` E ) |
| 16 |
5 15
|
eqtri |
|- S = ( Base ` E ) |
| 17 |
4 16
|
homffn |
|- J Fn ( S X. S ) |
| 18 |
|
ssid |
|- { (/) } C_ { (/) } |
| 19 |
|
snsspr1 |
|- { (/) } C_ { (/) , 1o } |
| 20 |
3
|
setc1ohomfval |
|- { <. (/) , (/) , 1o >. } = ( Hom ` E ) |
| 21 |
|
0lt1o |
|- (/) e. 1o |
| 22 |
21
|
a1i |
|- ( T. -> (/) e. 1o ) |
| 23 |
4 15 20 22 22
|
homfval |
|- ( T. -> ( (/) J (/) ) = ( (/) { <. (/) , (/) , 1o >. } (/) ) ) |
| 24 |
23
|
mptru |
|- ( (/) J (/) ) = ( (/) { <. (/) , (/) , 1o >. } (/) ) |
| 25 |
10
|
ovsn2 |
|- ( (/) { <. (/) , (/) , 1o >. } (/) ) = 1o |
| 26 |
|
df1o2 |
|- 1o = { (/) } |
| 27 |
24 25 26
|
3eqtri |
|- ( (/) J (/) ) = { (/) } |
| 28 |
|
snex |
|- { (/) } e. _V |
| 29 |
1 28
|
catbas |
|- { (/) } = ( Base ` C ) |
| 30 |
|
snex |
|- { <. (/) , (/) , 2o >. } e. _V |
| 31 |
1 30
|
cathomfval |
|- { <. (/) , (/) , 2o >. } = ( Hom ` C ) |
| 32 |
|
0ex |
|- (/) e. _V |
| 33 |
32
|
snid |
|- (/) e. { (/) } |
| 34 |
33
|
a1i |
|- ( T. -> (/) e. { (/) } ) |
| 35 |
6 29 31 34 34
|
homfval |
|- ( T. -> ( (/) H (/) ) = ( (/) { <. (/) , (/) , 2o >. } (/) ) ) |
| 36 |
35
|
mptru |
|- ( (/) H (/) ) = ( (/) { <. (/) , (/) , 2o >. } (/) ) |
| 37 |
|
2oex |
|- 2o e. _V |
| 38 |
37
|
ovsn2 |
|- ( (/) { <. (/) , (/) , 2o >. } (/) ) = 2o |
| 39 |
36 38 11
|
3eqtri |
|- ( (/) H (/) ) = { (/) , 1o } |
| 40 |
19 27 39
|
3sstr4i |
|- ( (/) J (/) ) C_ ( (/) H (/) ) |
| 41 |
|
oveq1 |
|- ( p = (/) -> ( p J q ) = ( (/) J q ) ) |
| 42 |
|
oveq1 |
|- ( p = (/) -> ( p H q ) = ( (/) H q ) ) |
| 43 |
41 42
|
sseq12d |
|- ( p = (/) -> ( ( p J q ) C_ ( p H q ) <-> ( (/) J q ) C_ ( (/) H q ) ) ) |
| 44 |
43
|
ralbidv |
|- ( p = (/) -> ( A. q e. { (/) } ( p J q ) C_ ( p H q ) <-> A. q e. { (/) } ( (/) J q ) C_ ( (/) H q ) ) ) |
| 45 |
32 44
|
ralsn |
|- ( A. p e. { (/) } A. q e. { (/) } ( p J q ) C_ ( p H q ) <-> A. q e. { (/) } ( (/) J q ) C_ ( (/) H q ) ) |
| 46 |
|
oveq2 |
|- ( q = (/) -> ( (/) J q ) = ( (/) J (/) ) ) |
| 47 |
|
oveq2 |
|- ( q = (/) -> ( (/) H q ) = ( (/) H (/) ) ) |
| 48 |
46 47
|
sseq12d |
|- ( q = (/) -> ( ( (/) J q ) C_ ( (/) H q ) <-> ( (/) J (/) ) C_ ( (/) H (/) ) ) ) |
| 49 |
32 48
|
ralsn |
|- ( A. q e. { (/) } ( (/) J q ) C_ ( (/) H q ) <-> ( (/) J (/) ) C_ ( (/) H (/) ) ) |
| 50 |
45 49
|
bitri |
|- ( A. p e. { (/) } A. q e. { (/) } ( p J q ) C_ ( p H q ) <-> ( (/) J (/) ) C_ ( (/) H (/) ) ) |
| 51 |
40 50
|
mpbir |
|- A. p e. { (/) } A. q e. { (/) } ( p J q ) C_ ( p H q ) |
| 52 |
26 15
|
eqtr3i |
|- { (/) } = ( Base ` E ) |
| 53 |
4 52
|
homffn |
|- J Fn ( { (/) } X. { (/) } ) |
| 54 |
53
|
a1i |
|- ( T. -> J Fn ( { (/) } X. { (/) } ) ) |
| 55 |
6 29
|
homffn |
|- H Fn ( { (/) } X. { (/) } ) |
| 56 |
55
|
a1i |
|- ( T. -> H Fn ( { (/) } X. { (/) } ) ) |
| 57 |
28
|
a1i |
|- ( T. -> { (/) } e. _V ) |
| 58 |
54 56 57
|
isssc |
|- ( T. -> ( J C_cat H <-> ( { (/) } C_ { (/) } /\ A. p e. { (/) } A. q e. { (/) } ( p J q ) C_ ( p H q ) ) ) ) |
| 59 |
58
|
mptru |
|- ( J C_cat H <-> ( { (/) } C_ { (/) } /\ A. p e. { (/) } A. q e. { (/) } ( p J q ) C_ ( p H q ) ) ) |
| 60 |
18 51 59
|
mpbir2an |
|- J C_cat H |
| 61 |
|
elirr |
|- -. { (/) } e. { (/) } |
| 62 |
5 26
|
eqtri |
|- S = { (/) } |
| 63 |
|
biid |
|- ( -. ( .1. ` x ) e. ( x J x ) <-> -. ( .1. ` x ) e. ( x J x ) ) |
| 64 |
62 63
|
rexeqbii |
|- ( E. x e. S -. ( .1. ` x ) e. ( x J x ) <-> E. x e. { (/) } -. ( .1. ` x ) e. ( x J x ) ) |
| 65 |
|
rexnal |
|- ( E. x e. S -. ( .1. ` x ) e. ( x J x ) <-> -. A. x e. S ( .1. ` x ) e. ( x J x ) ) |
| 66 |
|
fveq2 |
|- ( x = (/) -> ( .1. ` x ) = ( .1. ` (/) ) ) |
| 67 |
26
|
a1i |
|- ( y = (/) -> 1o = { (/) } ) |
| 68 |
13
|
simpri |
|- ( Id ` C ) = ( y e. { (/) } |-> 1o ) |
| 69 |
7 68
|
eqtri |
|- .1. = ( y e. { (/) } |-> 1o ) |
| 70 |
67 69 28
|
fvmpt |
|- ( (/) e. { (/) } -> ( .1. ` (/) ) = { (/) } ) |
| 71 |
33 70
|
ax-mp |
|- ( .1. ` (/) ) = { (/) } |
| 72 |
66 71
|
eqtrdi |
|- ( x = (/) -> ( .1. ` x ) = { (/) } ) |
| 73 |
|
oveq12 |
|- ( ( x = (/) /\ x = (/) ) -> ( x J x ) = ( (/) J (/) ) ) |
| 74 |
73
|
anidms |
|- ( x = (/) -> ( x J x ) = ( (/) J (/) ) ) |
| 75 |
74 27
|
eqtrdi |
|- ( x = (/) -> ( x J x ) = { (/) } ) |
| 76 |
72 75
|
eleq12d |
|- ( x = (/) -> ( ( .1. ` x ) e. ( x J x ) <-> { (/) } e. { (/) } ) ) |
| 77 |
76
|
notbid |
|- ( x = (/) -> ( -. ( .1. ` x ) e. ( x J x ) <-> -. { (/) } e. { (/) } ) ) |
| 78 |
32 77
|
rexsn |
|- ( E. x e. { (/) } -. ( .1. ` x ) e. ( x J x ) <-> -. { (/) } e. { (/) } ) |
| 79 |
64 65 78
|
3bitr3ri |
|- ( -. { (/) } e. { (/) } <-> -. A. x e. S ( .1. ` x ) e. ( x J x ) ) |
| 80 |
61 79
|
mpbi |
|- -. A. x e. S ( .1. ` x ) e. ( x J x ) |
| 81 |
|
setc1oterm |
|- ( SetCat ` 1o ) e. TermCat |
| 82 |
81
|
a1i |
|- ( T. -> ( SetCat ` 1o ) e. TermCat ) |
| 83 |
82
|
termccd |
|- ( T. -> ( SetCat ` 1o ) e. Cat ) |
| 84 |
83
|
mptru |
|- ( SetCat ` 1o ) e. Cat |
| 85 |
3 84
|
eqeltri |
|- E e. Cat |
| 86 |
|
snex |
|- { <. <. (/) , (/) >. , (/) , .x. >. } e. _V |
| 87 |
1 86
|
catcofval |
|- { <. <. (/) , (/) >. , (/) , .x. >. } = ( comp ` C ) |
| 88 |
3
|
setc1ocofval |
|- { <. <. (/) , (/) >. , (/) , { <. (/) , (/) , (/) >. } >. } = ( comp ` E ) |
| 89 |
|
velsn |
|- ( a e. { (/) } <-> a = (/) ) |
| 90 |
|
velsn |
|- ( b e. { (/) } <-> b = (/) ) |
| 91 |
|
velsn |
|- ( c e. { (/) } <-> c = (/) ) |
| 92 |
89 90 91
|
3anbi123i |
|- ( ( a e. { (/) } /\ b e. { (/) } /\ c e. { (/) } ) <-> ( a = (/) /\ b = (/) /\ c = (/) ) ) |
| 93 |
92
|
anbi1i |
|- ( ( ( a e. { (/) } /\ b e. { (/) } /\ c e. { (/) } ) /\ ( m e. ( a J b ) /\ n e. ( b J c ) ) ) <-> ( ( a = (/) /\ b = (/) /\ c = (/) ) /\ ( m e. ( a J b ) /\ n e. ( b J c ) ) ) ) |
| 94 |
|
simp1 |
|- ( ( a = (/) /\ b = (/) /\ c = (/) ) -> a = (/) ) |
| 95 |
|
simp2 |
|- ( ( a = (/) /\ b = (/) /\ c = (/) ) -> b = (/) ) |
| 96 |
94 95
|
oveq12d |
|- ( ( a = (/) /\ b = (/) /\ c = (/) ) -> ( a J b ) = ( (/) J (/) ) ) |
| 97 |
96 27
|
eqtrdi |
|- ( ( a = (/) /\ b = (/) /\ c = (/) ) -> ( a J b ) = { (/) } ) |
| 98 |
97
|
eleq2d |
|- ( ( a = (/) /\ b = (/) /\ c = (/) ) -> ( m e. ( a J b ) <-> m e. { (/) } ) ) |
| 99 |
|
velsn |
|- ( m e. { (/) } <-> m = (/) ) |
| 100 |
98 99
|
bitrdi |
|- ( ( a = (/) /\ b = (/) /\ c = (/) ) -> ( m e. ( a J b ) <-> m = (/) ) ) |
| 101 |
|
simp3 |
|- ( ( a = (/) /\ b = (/) /\ c = (/) ) -> c = (/) ) |
| 102 |
95 101
|
oveq12d |
|- ( ( a = (/) /\ b = (/) /\ c = (/) ) -> ( b J c ) = ( (/) J (/) ) ) |
| 103 |
102 27
|
eqtrdi |
|- ( ( a = (/) /\ b = (/) /\ c = (/) ) -> ( b J c ) = { (/) } ) |
| 104 |
103
|
eleq2d |
|- ( ( a = (/) /\ b = (/) /\ c = (/) ) -> ( n e. ( b J c ) <-> n e. { (/) } ) ) |
| 105 |
|
velsn |
|- ( n e. { (/) } <-> n = (/) ) |
| 106 |
104 105
|
bitrdi |
|- ( ( a = (/) /\ b = (/) /\ c = (/) ) -> ( n e. ( b J c ) <-> n = (/) ) ) |
| 107 |
100 106
|
anbi12d |
|- ( ( a = (/) /\ b = (/) /\ c = (/) ) -> ( ( m e. ( a J b ) /\ n e. ( b J c ) ) <-> ( m = (/) /\ n = (/) ) ) ) |
| 108 |
107
|
pm5.32i |
|- ( ( ( a = (/) /\ b = (/) /\ c = (/) ) /\ ( m e. ( a J b ) /\ n e. ( b J c ) ) ) <-> ( ( a = (/) /\ b = (/) /\ c = (/) ) /\ ( m = (/) /\ n = (/) ) ) ) |
| 109 |
93 108
|
bitri |
|- ( ( ( a e. { (/) } /\ b e. { (/) } /\ c e. { (/) } ) /\ ( m e. ( a J b ) /\ n e. ( b J c ) ) ) <-> ( ( a = (/) /\ b = (/) /\ c = (/) ) /\ ( m = (/) /\ n = (/) ) ) ) |
| 110 |
32
|
prid1 |
|- (/) e. { (/) , 1o } |
| 111 |
110 11
|
eleqtrri |
|- (/) e. 2o |
| 112 |
|
ineq12 |
|- ( ( f = (/) /\ g = (/) ) -> ( f i^i g ) = ( (/) i^i (/) ) ) |
| 113 |
|
0in |
|- ( (/) i^i (/) ) = (/) |
| 114 |
112 113
|
eqtrdi |
|- ( ( f = (/) /\ g = (/) ) -> ( f i^i g ) = (/) ) |
| 115 |
114 2 32
|
ovmpoa |
|- ( ( (/) e. 2o /\ (/) e. 2o ) -> ( (/) .x. (/) ) = (/) ) |
| 116 |
111 111 115
|
mp2an |
|- ( (/) .x. (/) ) = (/) |
| 117 |
32
|
ovsn2 |
|- ( (/) { <. (/) , (/) , (/) >. } (/) ) = (/) |
| 118 |
116 117
|
eqtr4i |
|- ( (/) .x. (/) ) = ( (/) { <. (/) , (/) , (/) >. } (/) ) |
| 119 |
|
simpl1 |
|- ( ( ( a = (/) /\ b = (/) /\ c = (/) ) /\ ( m = (/) /\ n = (/) ) ) -> a = (/) ) |
| 120 |
|
simpl2 |
|- ( ( ( a = (/) /\ b = (/) /\ c = (/) ) /\ ( m = (/) /\ n = (/) ) ) -> b = (/) ) |
| 121 |
119 120
|
opeq12d |
|- ( ( ( a = (/) /\ b = (/) /\ c = (/) ) /\ ( m = (/) /\ n = (/) ) ) -> <. a , b >. = <. (/) , (/) >. ) |
| 122 |
|
simpl3 |
|- ( ( ( a = (/) /\ b = (/) /\ c = (/) ) /\ ( m = (/) /\ n = (/) ) ) -> c = (/) ) |
| 123 |
121 122
|
oveq12d |
|- ( ( ( a = (/) /\ b = (/) /\ c = (/) ) /\ ( m = (/) /\ n = (/) ) ) -> ( <. a , b >. { <. <. (/) , (/) >. , (/) , .x. >. } c ) = ( <. (/) , (/) >. { <. <. (/) , (/) >. , (/) , .x. >. } (/) ) ) |
| 124 |
37 37
|
mpoex |
|- ( f e. 2o , g e. 2o |-> ( f i^i g ) ) e. _V |
| 125 |
2 124
|
eqeltri |
|- .x. e. _V |
| 126 |
125
|
ovsn2 |
|- ( <. (/) , (/) >. { <. <. (/) , (/) >. , (/) , .x. >. } (/) ) = .x. |
| 127 |
123 126
|
eqtrdi |
|- ( ( ( a = (/) /\ b = (/) /\ c = (/) ) /\ ( m = (/) /\ n = (/) ) ) -> ( <. a , b >. { <. <. (/) , (/) >. , (/) , .x. >. } c ) = .x. ) |
| 128 |
|
simprr |
|- ( ( ( a = (/) /\ b = (/) /\ c = (/) ) /\ ( m = (/) /\ n = (/) ) ) -> n = (/) ) |
| 129 |
|
simprl |
|- ( ( ( a = (/) /\ b = (/) /\ c = (/) ) /\ ( m = (/) /\ n = (/) ) ) -> m = (/) ) |
| 130 |
127 128 129
|
oveq123d |
|- ( ( ( a = (/) /\ b = (/) /\ c = (/) ) /\ ( m = (/) /\ n = (/) ) ) -> ( n ( <. a , b >. { <. <. (/) , (/) >. , (/) , .x. >. } c ) m ) = ( (/) .x. (/) ) ) |
| 131 |
121 122
|
oveq12d |
|- ( ( ( a = (/) /\ b = (/) /\ c = (/) ) /\ ( m = (/) /\ n = (/) ) ) -> ( <. a , b >. { <. <. (/) , (/) >. , (/) , { <. (/) , (/) , (/) >. } >. } c ) = ( <. (/) , (/) >. { <. <. (/) , (/) >. , (/) , { <. (/) , (/) , (/) >. } >. } (/) ) ) |
| 132 |
|
snex |
|- { <. (/) , (/) , (/) >. } e. _V |
| 133 |
132
|
ovsn2 |
|- ( <. (/) , (/) >. { <. <. (/) , (/) >. , (/) , { <. (/) , (/) , (/) >. } >. } (/) ) = { <. (/) , (/) , (/) >. } |
| 134 |
131 133
|
eqtrdi |
|- ( ( ( a = (/) /\ b = (/) /\ c = (/) ) /\ ( m = (/) /\ n = (/) ) ) -> ( <. a , b >. { <. <. (/) , (/) >. , (/) , { <. (/) , (/) , (/) >. } >. } c ) = { <. (/) , (/) , (/) >. } ) |
| 135 |
134 128 129
|
oveq123d |
|- ( ( ( a = (/) /\ b = (/) /\ c = (/) ) /\ ( m = (/) /\ n = (/) ) ) -> ( n ( <. a , b >. { <. <. (/) , (/) >. , (/) , { <. (/) , (/) , (/) >. } >. } c ) m ) = ( (/) { <. (/) , (/) , (/) >. } (/) ) ) |
| 136 |
118 130 135
|
3eqtr4a |
|- ( ( ( a = (/) /\ b = (/) /\ c = (/) ) /\ ( m = (/) /\ n = (/) ) ) -> ( n ( <. a , b >. { <. <. (/) , (/) >. , (/) , .x. >. } c ) m ) = ( n ( <. a , b >. { <. <. (/) , (/) >. , (/) , { <. (/) , (/) , (/) >. } >. } c ) m ) ) |
| 137 |
109 136
|
sylbi |
|- ( ( ( a e. { (/) } /\ b e. { (/) } /\ c e. { (/) } ) /\ ( m e. ( a J b ) /\ n e. ( b J c ) ) ) -> ( n ( <. a , b >. { <. <. (/) , (/) >. , (/) , .x. >. } c ) m ) = ( n ( <. a , b >. { <. <. (/) , (/) >. , (/) , { <. (/) , (/) , (/) >. } >. } c ) m ) ) |
| 138 |
137
|
adantll |
|- ( ( ( T. /\ ( a e. { (/) } /\ b e. { (/) } /\ c e. { (/) } ) ) /\ ( m e. ( a J b ) /\ n e. ( b J c ) ) ) -> ( n ( <. a , b >. { <. <. (/) , (/) >. , (/) , .x. >. } c ) m ) = ( n ( <. a , b >. { <. <. (/) , (/) >. , (/) , { <. (/) , (/) , (/) >. } >. } c ) m ) ) |
| 139 |
85
|
a1i |
|- ( T. -> E e. Cat ) |
| 140 |
18
|
a1i |
|- ( T. -> { (/) } C_ { (/) } ) |
| 141 |
8 29 52 4 87 88 138 139 140
|
resccat |
|- ( T. -> ( D e. Cat <-> E e. Cat ) ) |
| 142 |
141
|
mptru |
|- ( D e. Cat <-> E e. Cat ) |
| 143 |
85 142
|
mpbir |
|- D e. Cat |
| 144 |
60 80 143
|
3pm3.2i |
|- ( J C_cat H /\ -. A. x e. S ( .1. ` x ) e. ( x J x ) /\ D e. Cat ) |
| 145 |
14 17 144
|
3pm3.2i |
|- ( C e. Cat /\ J Fn ( S X. S ) /\ ( J C_cat H /\ -. A. x e. S ( .1. ` x ) e. ( x J x ) /\ D e. Cat ) ) |