| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnelsubclem.1 |
|- J e. _V |
| 2 |
|
cnelsubclem.2 |
|- S e. _V |
| 3 |
|
cnelsubclem.3 |
|- ( C e. Cat /\ J Fn ( S X. S ) /\ ( J C_cat ( Homf ` C ) /\ -. A. x e. S ( ( Id ` C ) ` x ) e. ( x J x ) /\ ( C |`cat J ) e. Cat ) ) |
| 4 |
3
|
simp1i |
|- C e. Cat |
| 5 |
3
|
simp2i |
|- J Fn ( S X. S ) |
| 6 |
3
|
simp3i |
|- ( J C_cat ( Homf ` C ) /\ -. A. x e. S ( ( Id ` C ) ` x ) e. ( x J x ) /\ ( C |`cat J ) e. Cat ) |
| 7 |
|
id |
|- ( s = S -> s = S ) |
| 8 |
7
|
sqxpeqd |
|- ( s = S -> ( s X. s ) = ( S X. S ) ) |
| 9 |
8
|
fneq2d |
|- ( s = S -> ( J Fn ( s X. s ) <-> J Fn ( S X. S ) ) ) |
| 10 |
|
raleq |
|- ( s = S -> ( A. x e. s ( ( Id ` C ) ` x ) e. ( x J x ) <-> A. x e. S ( ( Id ` C ) ` x ) e. ( x J x ) ) ) |
| 11 |
10
|
notbid |
|- ( s = S -> ( -. A. x e. s ( ( Id ` C ) ` x ) e. ( x J x ) <-> -. A. x e. S ( ( Id ` C ) ` x ) e. ( x J x ) ) ) |
| 12 |
11
|
3anbi2d |
|- ( s = S -> ( ( J C_cat ( Homf ` C ) /\ -. A. x e. s ( ( Id ` C ) ` x ) e. ( x J x ) /\ ( C |`cat J ) e. Cat ) <-> ( J C_cat ( Homf ` C ) /\ -. A. x e. S ( ( Id ` C ) ` x ) e. ( x J x ) /\ ( C |`cat J ) e. Cat ) ) ) |
| 13 |
9 12
|
anbi12d |
|- ( s = S -> ( ( J Fn ( s X. s ) /\ ( J C_cat ( Homf ` C ) /\ -. A. x e. s ( ( Id ` C ) ` x ) e. ( x J x ) /\ ( C |`cat J ) e. Cat ) ) <-> ( J Fn ( S X. S ) /\ ( J C_cat ( Homf ` C ) /\ -. A. x e. S ( ( Id ` C ) ` x ) e. ( x J x ) /\ ( C |`cat J ) e. Cat ) ) ) ) |
| 14 |
2 13
|
spcev |
|- ( ( J Fn ( S X. S ) /\ ( J C_cat ( Homf ` C ) /\ -. A. x e. S ( ( Id ` C ) ` x ) e. ( x J x ) /\ ( C |`cat J ) e. Cat ) ) -> E. s ( J Fn ( s X. s ) /\ ( J C_cat ( Homf ` C ) /\ -. A. x e. s ( ( Id ` C ) ` x ) e. ( x J x ) /\ ( C |`cat J ) e. Cat ) ) ) |
| 15 |
|
fneq1 |
|- ( j = J -> ( j Fn ( s X. s ) <-> J Fn ( s X. s ) ) ) |
| 16 |
|
breq1 |
|- ( j = J -> ( j C_cat ( Homf ` C ) <-> J C_cat ( Homf ` C ) ) ) |
| 17 |
|
oveq |
|- ( j = J -> ( x j x ) = ( x J x ) ) |
| 18 |
17
|
eleq2d |
|- ( j = J -> ( ( ( Id ` C ) ` x ) e. ( x j x ) <-> ( ( Id ` C ) ` x ) e. ( x J x ) ) ) |
| 19 |
18
|
ralbidv |
|- ( j = J -> ( A. x e. s ( ( Id ` C ) ` x ) e. ( x j x ) <-> A. x e. s ( ( Id ` C ) ` x ) e. ( x J x ) ) ) |
| 20 |
19
|
notbid |
|- ( j = J -> ( -. A. x e. s ( ( Id ` C ) ` x ) e. ( x j x ) <-> -. A. x e. s ( ( Id ` C ) ` x ) e. ( x J x ) ) ) |
| 21 |
|
oveq2 |
|- ( j = J -> ( C |`cat j ) = ( C |`cat J ) ) |
| 22 |
21
|
eleq1d |
|- ( j = J -> ( ( C |`cat j ) e. Cat <-> ( C |`cat J ) e. Cat ) ) |
| 23 |
16 20 22
|
3anbi123d |
|- ( j = J -> ( ( j C_cat ( Homf ` C ) /\ -. A. x e. s ( ( Id ` C ) ` x ) e. ( x j x ) /\ ( C |`cat j ) e. Cat ) <-> ( J C_cat ( Homf ` C ) /\ -. A. x e. s ( ( Id ` C ) ` x ) e. ( x J x ) /\ ( C |`cat J ) e. Cat ) ) ) |
| 24 |
15 23
|
anbi12d |
|- ( j = J -> ( ( j Fn ( s X. s ) /\ ( j C_cat ( Homf ` C ) /\ -. A. x e. s ( ( Id ` C ) ` x ) e. ( x j x ) /\ ( C |`cat j ) e. Cat ) ) <-> ( J Fn ( s X. s ) /\ ( J C_cat ( Homf ` C ) /\ -. A. x e. s ( ( Id ` C ) ` x ) e. ( x J x ) /\ ( C |`cat J ) e. Cat ) ) ) ) |
| 25 |
24
|
exbidv |
|- ( j = J -> ( E. s ( j Fn ( s X. s ) /\ ( j C_cat ( Homf ` C ) /\ -. A. x e. s ( ( Id ` C ) ` x ) e. ( x j x ) /\ ( C |`cat j ) e. Cat ) ) <-> E. s ( J Fn ( s X. s ) /\ ( J C_cat ( Homf ` C ) /\ -. A. x e. s ( ( Id ` C ) ` x ) e. ( x J x ) /\ ( C |`cat J ) e. Cat ) ) ) ) |
| 26 |
1 25
|
spcev |
|- ( E. s ( J Fn ( s X. s ) /\ ( J C_cat ( Homf ` C ) /\ -. A. x e. s ( ( Id ` C ) ` x ) e. ( x J x ) /\ ( C |`cat J ) e. Cat ) ) -> E. j E. s ( j Fn ( s X. s ) /\ ( j C_cat ( Homf ` C ) /\ -. A. x e. s ( ( Id ` C ) ` x ) e. ( x j x ) /\ ( C |`cat j ) e. Cat ) ) ) |
| 27 |
14 26
|
syl |
|- ( ( J Fn ( S X. S ) /\ ( J C_cat ( Homf ` C ) /\ -. A. x e. S ( ( Id ` C ) ` x ) e. ( x J x ) /\ ( C |`cat J ) e. Cat ) ) -> E. j E. s ( j Fn ( s X. s ) /\ ( j C_cat ( Homf ` C ) /\ -. A. x e. s ( ( Id ` C ) ` x ) e. ( x j x ) /\ ( C |`cat j ) e. Cat ) ) ) |
| 28 |
5 6 27
|
mp2an |
|- E. j E. s ( j Fn ( s X. s ) /\ ( j C_cat ( Homf ` C ) /\ -. A. x e. s ( ( Id ` C ) ` x ) e. ( x j x ) /\ ( C |`cat j ) e. Cat ) ) |
| 29 |
|
fveq2 |
|- ( c = C -> ( Homf ` c ) = ( Homf ` C ) ) |
| 30 |
29
|
breq2d |
|- ( c = C -> ( j C_cat ( Homf ` c ) <-> j C_cat ( Homf ` C ) ) ) |
| 31 |
|
fveq2 |
|- ( c = C -> ( Id ` c ) = ( Id ` C ) ) |
| 32 |
31
|
fveq1d |
|- ( c = C -> ( ( Id ` c ) ` x ) = ( ( Id ` C ) ` x ) ) |
| 33 |
32
|
eleq1d |
|- ( c = C -> ( ( ( Id ` c ) ` x ) e. ( x j x ) <-> ( ( Id ` C ) ` x ) e. ( x j x ) ) ) |
| 34 |
33
|
ralbidv |
|- ( c = C -> ( A. x e. s ( ( Id ` c ) ` x ) e. ( x j x ) <-> A. x e. s ( ( Id ` C ) ` x ) e. ( x j x ) ) ) |
| 35 |
34
|
notbid |
|- ( c = C -> ( -. A. x e. s ( ( Id ` c ) ` x ) e. ( x j x ) <-> -. A. x e. s ( ( Id ` C ) ` x ) e. ( x j x ) ) ) |
| 36 |
|
oveq1 |
|- ( c = C -> ( c |`cat j ) = ( C |`cat j ) ) |
| 37 |
36
|
eleq1d |
|- ( c = C -> ( ( c |`cat j ) e. Cat <-> ( C |`cat j ) e. Cat ) ) |
| 38 |
30 35 37
|
3anbi123d |
|- ( c = C -> ( ( j C_cat ( Homf ` c ) /\ -. A. x e. s ( ( Id ` c ) ` x ) e. ( x j x ) /\ ( c |`cat j ) e. Cat ) <-> ( j C_cat ( Homf ` C ) /\ -. A. x e. s ( ( Id ` C ) ` x ) e. ( x j x ) /\ ( C |`cat j ) e. Cat ) ) ) |
| 39 |
38
|
anbi2d |
|- ( c = C -> ( ( j Fn ( s X. s ) /\ ( j C_cat ( Homf ` c ) /\ -. A. x e. s ( ( Id ` c ) ` x ) e. ( x j x ) /\ ( c |`cat j ) e. Cat ) ) <-> ( j Fn ( s X. s ) /\ ( j C_cat ( Homf ` C ) /\ -. A. x e. s ( ( Id ` C ) ` x ) e. ( x j x ) /\ ( C |`cat j ) e. Cat ) ) ) ) |
| 40 |
39
|
2exbidv |
|- ( c = C -> ( E. j E. s ( j Fn ( s X. s ) /\ ( j C_cat ( Homf ` c ) /\ -. A. x e. s ( ( Id ` c ) ` x ) e. ( x j x ) /\ ( c |`cat j ) e. Cat ) ) <-> E. j E. s ( j Fn ( s X. s ) /\ ( j C_cat ( Homf ` C ) /\ -. A. x e. s ( ( Id ` C ) ` x ) e. ( x j x ) /\ ( C |`cat j ) e. Cat ) ) ) ) |
| 41 |
40
|
rspcev |
|- ( ( C e. Cat /\ E. j E. s ( j Fn ( s X. s ) /\ ( j C_cat ( Homf ` C ) /\ -. A. x e. s ( ( Id ` C ) ` x ) e. ( x j x ) /\ ( C |`cat j ) e. Cat ) ) ) -> E. c e. Cat E. j E. s ( j Fn ( s X. s ) /\ ( j C_cat ( Homf ` c ) /\ -. A. x e. s ( ( Id ` c ) ` x ) e. ( x j x ) /\ ( c |`cat j ) e. Cat ) ) ) |
| 42 |
4 28 41
|
mp2an |
|- E. c e. Cat E. j E. s ( j Fn ( s X. s ) /\ ( j C_cat ( Homf ` c ) /\ -. A. x e. s ( ( Id ` c ) ` x ) e. ( x j x ) /\ ( c |`cat j ) e. Cat ) ) |