| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvex |
|- ( Homf ` ( SetCat ` 1o ) ) e. _V |
| 2 |
|
1oex |
|- 1o e. _V |
| 3 |
|
eqid |
|- { <. ( Base ` ndx ) , { (/) } >. , <. ( Hom ` ndx ) , { <. (/) , (/) , 2o >. } >. , <. ( comp ` ndx ) , { <. <. (/) , (/) >. , (/) , ( f e. 2o , g e. 2o |-> ( f i^i g ) ) >. } >. } = { <. ( Base ` ndx ) , { (/) } >. , <. ( Hom ` ndx ) , { <. (/) , (/) , 2o >. } >. , <. ( comp ` ndx ) , { <. <. (/) , (/) >. , (/) , ( f e. 2o , g e. 2o |-> ( f i^i g ) ) >. } >. } |
| 4 |
|
eqid |
|- ( f e. 2o , g e. 2o |-> ( f i^i g ) ) = ( f e. 2o , g e. 2o |-> ( f i^i g ) ) |
| 5 |
|
eqid |
|- ( SetCat ` 1o ) = ( SetCat ` 1o ) |
| 6 |
|
eqid |
|- ( Homf ` ( SetCat ` 1o ) ) = ( Homf ` ( SetCat ` 1o ) ) |
| 7 |
|
eqid |
|- 1o = 1o |
| 8 |
|
eqid |
|- ( Homf ` { <. ( Base ` ndx ) , { (/) } >. , <. ( Hom ` ndx ) , { <. (/) , (/) , 2o >. } >. , <. ( comp ` ndx ) , { <. <. (/) , (/) >. , (/) , ( f e. 2o , g e. 2o |-> ( f i^i g ) ) >. } >. } ) = ( Homf ` { <. ( Base ` ndx ) , { (/) } >. , <. ( Hom ` ndx ) , { <. (/) , (/) , 2o >. } >. , <. ( comp ` ndx ) , { <. <. (/) , (/) >. , (/) , ( f e. 2o , g e. 2o |-> ( f i^i g ) ) >. } >. } ) |
| 9 |
|
eqid |
|- ( Id ` { <. ( Base ` ndx ) , { (/) } >. , <. ( Hom ` ndx ) , { <. (/) , (/) , 2o >. } >. , <. ( comp ` ndx ) , { <. <. (/) , (/) >. , (/) , ( f e. 2o , g e. 2o |-> ( f i^i g ) ) >. } >. } ) = ( Id ` { <. ( Base ` ndx ) , { (/) } >. , <. ( Hom ` ndx ) , { <. (/) , (/) , 2o >. } >. , <. ( comp ` ndx ) , { <. <. (/) , (/) >. , (/) , ( f e. 2o , g e. 2o |-> ( f i^i g ) ) >. } >. } ) |
| 10 |
|
eqid |
|- ( { <. ( Base ` ndx ) , { (/) } >. , <. ( Hom ` ndx ) , { <. (/) , (/) , 2o >. } >. , <. ( comp ` ndx ) , { <. <. (/) , (/) >. , (/) , ( f e. 2o , g e. 2o |-> ( f i^i g ) ) >. } >. } |`cat ( Homf ` ( SetCat ` 1o ) ) ) = ( { <. ( Base ` ndx ) , { (/) } >. , <. ( Hom ` ndx ) , { <. (/) , (/) , 2o >. } >. , <. ( comp ` ndx ) , { <. <. (/) , (/) >. , (/) , ( f e. 2o , g e. 2o |-> ( f i^i g ) ) >. } >. } |`cat ( Homf ` ( SetCat ` 1o ) ) ) |
| 11 |
3 4 5 6 7 8 9 10
|
setc1onsubc |
|- ( { <. ( Base ` ndx ) , { (/) } >. , <. ( Hom ` ndx ) , { <. (/) , (/) , 2o >. } >. , <. ( comp ` ndx ) , { <. <. (/) , (/) >. , (/) , ( f e. 2o , g e. 2o |-> ( f i^i g ) ) >. } >. } e. Cat /\ ( Homf ` ( SetCat ` 1o ) ) Fn ( 1o X. 1o ) /\ ( ( Homf ` ( SetCat ` 1o ) ) C_cat ( Homf ` { <. ( Base ` ndx ) , { (/) } >. , <. ( Hom ` ndx ) , { <. (/) , (/) , 2o >. } >. , <. ( comp ` ndx ) , { <. <. (/) , (/) >. , (/) , ( f e. 2o , g e. 2o |-> ( f i^i g ) ) >. } >. } ) /\ -. A. x e. 1o ( ( Id ` { <. ( Base ` ndx ) , { (/) } >. , <. ( Hom ` ndx ) , { <. (/) , (/) , 2o >. } >. , <. ( comp ` ndx ) , { <. <. (/) , (/) >. , (/) , ( f e. 2o , g e. 2o |-> ( f i^i g ) ) >. } >. } ) ` x ) e. ( x ( Homf ` ( SetCat ` 1o ) ) x ) /\ ( { <. ( Base ` ndx ) , { (/) } >. , <. ( Hom ` ndx ) , { <. (/) , (/) , 2o >. } >. , <. ( comp ` ndx ) , { <. <. (/) , (/) >. , (/) , ( f e. 2o , g e. 2o |-> ( f i^i g ) ) >. } >. } |`cat ( Homf ` ( SetCat ` 1o ) ) ) e. Cat ) ) |
| 12 |
1 2 11
|
cnelsubclem |
|- E. c e. Cat E. j E. s ( j Fn ( s X. s ) /\ ( j C_cat ( Homf ` c ) /\ -. A. x e. s ( ( Id ` c ) ` x ) e. ( x j x ) /\ ( c |`cat j ) e. Cat ) ) |