Description: Remark 4.2(2) of Adamek p. 48. There exists a set satisfying all conditions for a subcategory but the existence of identity morphisms. Therefore such condition in df-subc is necessary.
Note that this theorem cheated a little bit because ` ( C |``cat J ) ` is not a category. In fact ` ( C |``cat J ) e. Cat ` is a stronger statement than the condition (d) of Definition 4.1(1) of Adamek p. 48, as stated here (see the proof of issubc3 ). To construct such a category, see setc1onsubc and cnelsubc . (Contributed by Zhi Wang, 5-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nelsubc3 | |- E. c e. Cat E. j E. s ( j Fn ( s X. s ) /\ ( j C_cat ( Homf ` c ) /\ ( -. A. x e. s ( ( Id ` c ) ` x ) e. ( x j x ) /\ A. x e. s A. y e. s A. z e. s A. f e. ( x j y ) A. g e. ( y j z ) ( g ( <. x , y >. ( comp ` c ) z ) f ) e. ( x j z ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2oex | |- 2o e. _V |
|
| 2 | eqid | |- ( SetCat ` 2o ) = ( SetCat ` 2o ) |
|
| 3 | 2 | setccat | |- ( 2o e. _V -> ( SetCat ` 2o ) e. Cat ) |
| 4 | 1 3 | ax-mp | |- ( SetCat ` 2o ) e. Cat |
| 5 | 1oex | |- 1o e. _V |
|
| 6 | 5 5 | xpex | |- ( 1o X. 1o ) e. _V |
| 7 | p0ex | |- { (/) } e. _V |
|
| 8 | 6 7 | xpex | |- ( ( 1o X. 1o ) X. { (/) } ) e. _V |
| 9 | 1 | a1i | |- ( T. -> 2o e. _V ) |
| 10 | 2 9 | setcbas | |- ( T. -> 2o = ( Base ` ( SetCat ` 2o ) ) ) |
| 11 | 10 | mptru | |- 2o = ( Base ` ( SetCat ` 2o ) ) |
| 12 | 2on0 | |- 2o =/= (/) |
|
| 13 | 2on | |- 2o e. On |
|
| 14 | 13 | onordi | |- Ord 2o |
| 15 | ordge1n0 | |- ( Ord 2o -> ( 1o C_ 2o <-> 2o =/= (/) ) ) |
|
| 16 | 14 15 | ax-mp | |- ( 1o C_ 2o <-> 2o =/= (/) ) |
| 17 | 12 16 | mpbir | |- 1o C_ 2o |
| 18 | 17 | a1i | |- ( T. -> 1o C_ 2o ) |
| 19 | 1n0 | |- 1o =/= (/) |
|
| 20 | 19 | a1i | |- ( T. -> 1o =/= (/) ) |
| 21 | eqidd | |- ( T. -> ( ( 1o X. 1o ) X. { (/) } ) = ( ( 1o X. 1o ) X. { (/) } ) ) |
|
| 22 | eqid | |- ( Homf ` ( SetCat ` 2o ) ) = ( Homf ` ( SetCat ` 2o ) ) |
|
| 23 | 11 18 20 21 22 | nelsubclem | |- ( T. -> ( ( ( 1o X. 1o ) X. { (/) } ) Fn ( 1o X. 1o ) /\ ( ( ( 1o X. 1o ) X. { (/) } ) C_cat ( Homf ` ( SetCat ` 2o ) ) /\ ( -. A. x e. 1o ( ( Id ` ( SetCat ` 2o ) ) ` x ) e. ( x ( ( 1o X. 1o ) X. { (/) } ) x ) /\ A. x e. 1o A. y e. 1o A. z e. 1o A. f e. ( x ( ( 1o X. 1o ) X. { (/) } ) y ) A. g e. ( y ( ( 1o X. 1o ) X. { (/) } ) z ) ( g ( <. x , y >. ( comp ` ( SetCat ` 2o ) ) z ) f ) e. ( x ( ( 1o X. 1o ) X. { (/) } ) z ) ) ) ) ) |
| 24 | 23 | mptru | |- ( ( ( 1o X. 1o ) X. { (/) } ) Fn ( 1o X. 1o ) /\ ( ( ( 1o X. 1o ) X. { (/) } ) C_cat ( Homf ` ( SetCat ` 2o ) ) /\ ( -. A. x e. 1o ( ( Id ` ( SetCat ` 2o ) ) ` x ) e. ( x ( ( 1o X. 1o ) X. { (/) } ) x ) /\ A. x e. 1o A. y e. 1o A. z e. 1o A. f e. ( x ( ( 1o X. 1o ) X. { (/) } ) y ) A. g e. ( y ( ( 1o X. 1o ) X. { (/) } ) z ) ( g ( <. x , y >. ( comp ` ( SetCat ` 2o ) ) z ) f ) e. ( x ( ( 1o X. 1o ) X. { (/) } ) z ) ) ) ) |
| 25 | 4 8 5 24 | nelsubc3lem | |- E. c e. Cat E. j E. s ( j Fn ( s X. s ) /\ ( j C_cat ( Homf ` c ) /\ ( -. A. x e. s ( ( Id ` c ) ` x ) e. ( x j x ) /\ A. x e. s A. y e. s A. z e. s A. f e. ( x j y ) A. g e. ( y j z ) ( g ( <. x , y >. ( comp ` c ) z ) f ) e. ( x j z ) ) ) ) |