Metamath Proof Explorer


Theorem nelsubc3

Description: Remark 4.2(2) of Adamek p. 48. There exists a set satisfying all conditions for a subcategory but the existence of identity morphisms. Therefore such condition in df-subc is necessary.

Note that this theorem cheated a little bit because ` ( C |``cat J ) ` is not a category. In fact ` ( C |``cat J ) e. Cat ` is a stronger statement than the condition (d) of Definition 4.1(1) of Adamek p. 48, as stated here (see the proof of issubc3 ). To construct such a category, see setc1onsubc and cnelsubc . (Contributed by Zhi Wang, 5-Nov-2025)

Ref Expression
Assertion nelsubc3 𝑐 ∈ Cat ∃ 𝑗𝑠 ( 𝑗 Fn ( 𝑠 × 𝑠 ) ∧ ( 𝑗cat ( Homf𝑐 ) ∧ ( ¬ ∀ 𝑥𝑠 ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑥𝑠𝑦𝑠𝑧𝑠𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) )

Proof

Step Hyp Ref Expression
1 2oex 2o ∈ V
2 eqid ( SetCat ‘ 2o ) = ( SetCat ‘ 2o )
3 2 setccat ( 2o ∈ V → ( SetCat ‘ 2o ) ∈ Cat )
4 1 3 ax-mp ( SetCat ‘ 2o ) ∈ Cat
5 1oex 1o ∈ V
6 5 5 xpex ( 1o × 1o ) ∈ V
7 p0ex { ∅ } ∈ V
8 6 7 xpex ( ( 1o × 1o ) × { ∅ } ) ∈ V
9 1 a1i ( ⊤ → 2o ∈ V )
10 2 9 setcbas ( ⊤ → 2o = ( Base ‘ ( SetCat ‘ 2o ) ) )
11 10 mptru 2o = ( Base ‘ ( SetCat ‘ 2o ) )
12 2on0 2o ≠ ∅
13 2on 2o ∈ On
14 13 onordi Ord 2o
15 ordge1n0 ( Ord 2o → ( 1o ⊆ 2o ↔ 2o ≠ ∅ ) )
16 14 15 ax-mp ( 1o ⊆ 2o ↔ 2o ≠ ∅ )
17 12 16 mpbir 1o ⊆ 2o
18 17 a1i ( ⊤ → 1o ⊆ 2o )
19 1n0 1o ≠ ∅
20 19 a1i ( ⊤ → 1o ≠ ∅ )
21 eqidd ( ⊤ → ( ( 1o × 1o ) × { ∅ } ) = ( ( 1o × 1o ) × { ∅ } ) )
22 eqid ( Homf ‘ ( SetCat ‘ 2o ) ) = ( Homf ‘ ( SetCat ‘ 2o ) )
23 11 18 20 21 22 nelsubclem ( ⊤ → ( ( ( 1o × 1o ) × { ∅ } ) Fn ( 1o × 1o ) ∧ ( ( ( 1o × 1o ) × { ∅ } ) ⊆cat ( Homf ‘ ( SetCat ‘ 2o ) ) ∧ ( ¬ ∀ 𝑥 ∈ 1o ( ( Id ‘ ( SetCat ‘ 2o ) ) ‘ 𝑥 ) ∈ ( 𝑥 ( ( 1o × 1o ) × { ∅ } ) 𝑥 ) ∧ ∀ 𝑥 ∈ 1o𝑦 ∈ 1o𝑧 ∈ 1o𝑓 ∈ ( 𝑥 ( ( 1o × 1o ) × { ∅ } ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( ( 1o × 1o ) × { ∅ } ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ ( SetCat ‘ 2o ) ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( ( 1o × 1o ) × { ∅ } ) 𝑧 ) ) ) ) )
24 23 mptru ( ( ( 1o × 1o ) × { ∅ } ) Fn ( 1o × 1o ) ∧ ( ( ( 1o × 1o ) × { ∅ } ) ⊆cat ( Homf ‘ ( SetCat ‘ 2o ) ) ∧ ( ¬ ∀ 𝑥 ∈ 1o ( ( Id ‘ ( SetCat ‘ 2o ) ) ‘ 𝑥 ) ∈ ( 𝑥 ( ( 1o × 1o ) × { ∅ } ) 𝑥 ) ∧ ∀ 𝑥 ∈ 1o𝑦 ∈ 1o𝑧 ∈ 1o𝑓 ∈ ( 𝑥 ( ( 1o × 1o ) × { ∅ } ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( ( 1o × 1o ) × { ∅ } ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ ( SetCat ‘ 2o ) ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( ( 1o × 1o ) × { ∅ } ) 𝑧 ) ) ) )
25 4 8 5 24 nelsubc3lem 𝑐 ∈ Cat ∃ 𝑗𝑠 ( 𝑗 Fn ( 𝑠 × 𝑠 ) ∧ ( 𝑗cat ( Homf𝑐 ) ∧ ( ¬ ∀ 𝑥𝑠 ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑥𝑠𝑦𝑠𝑧𝑠𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) )