Description: Remark 4.2(2) of Adamek p. 48. There exists a set satisfying all conditions for a subcategory but the existence of identity morphisms. Therefore such condition in df-subc is necessary.
Note that this theorem cheated a little bit because ` ( C |``cat J ) ` is not a category. In fact ` ( C |``cat J ) e. Cat ` is a stronger statement than the condition (d) of Definition 4.1(1) of Adamek p. 48, as stated here (see the proof of issubc3 ). To construct such a category, see setc1onsubc and cnelsubc . (Contributed by Zhi Wang, 5-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nelsubc3 | ⊢ ∃ 𝑐 ∈ Cat ∃ 𝑗 ∃ 𝑠 ( 𝑗 Fn ( 𝑠 × 𝑠 ) ∧ ( 𝑗 ⊆cat ( Homf ‘ 𝑐 ) ∧ ( ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2oex | ⊢ 2o ∈ V | |
| 2 | eqid | ⊢ ( SetCat ‘ 2o ) = ( SetCat ‘ 2o ) | |
| 3 | 2 | setccat | ⊢ ( 2o ∈ V → ( SetCat ‘ 2o ) ∈ Cat ) |
| 4 | 1 3 | ax-mp | ⊢ ( SetCat ‘ 2o ) ∈ Cat |
| 5 | 1oex | ⊢ 1o ∈ V | |
| 6 | 5 5 | xpex | ⊢ ( 1o × 1o ) ∈ V |
| 7 | p0ex | ⊢ { ∅ } ∈ V | |
| 8 | 6 7 | xpex | ⊢ ( ( 1o × 1o ) × { ∅ } ) ∈ V |
| 9 | 1 | a1i | ⊢ ( ⊤ → 2o ∈ V ) |
| 10 | 2 9 | setcbas | ⊢ ( ⊤ → 2o = ( Base ‘ ( SetCat ‘ 2o ) ) ) |
| 11 | 10 | mptru | ⊢ 2o = ( Base ‘ ( SetCat ‘ 2o ) ) |
| 12 | 2on0 | ⊢ 2o ≠ ∅ | |
| 13 | 2on | ⊢ 2o ∈ On | |
| 14 | 13 | onordi | ⊢ Ord 2o |
| 15 | ordge1n0 | ⊢ ( Ord 2o → ( 1o ⊆ 2o ↔ 2o ≠ ∅ ) ) | |
| 16 | 14 15 | ax-mp | ⊢ ( 1o ⊆ 2o ↔ 2o ≠ ∅ ) |
| 17 | 12 16 | mpbir | ⊢ 1o ⊆ 2o |
| 18 | 17 | a1i | ⊢ ( ⊤ → 1o ⊆ 2o ) |
| 19 | 1n0 | ⊢ 1o ≠ ∅ | |
| 20 | 19 | a1i | ⊢ ( ⊤ → 1o ≠ ∅ ) |
| 21 | eqidd | ⊢ ( ⊤ → ( ( 1o × 1o ) × { ∅ } ) = ( ( 1o × 1o ) × { ∅ } ) ) | |
| 22 | eqid | ⊢ ( Homf ‘ ( SetCat ‘ 2o ) ) = ( Homf ‘ ( SetCat ‘ 2o ) ) | |
| 23 | 11 18 20 21 22 | nelsubclem | ⊢ ( ⊤ → ( ( ( 1o × 1o ) × { ∅ } ) Fn ( 1o × 1o ) ∧ ( ( ( 1o × 1o ) × { ∅ } ) ⊆cat ( Homf ‘ ( SetCat ‘ 2o ) ) ∧ ( ¬ ∀ 𝑥 ∈ 1o ( ( Id ‘ ( SetCat ‘ 2o ) ) ‘ 𝑥 ) ∈ ( 𝑥 ( ( 1o × 1o ) × { ∅ } ) 𝑥 ) ∧ ∀ 𝑥 ∈ 1o ∀ 𝑦 ∈ 1o ∀ 𝑧 ∈ 1o ∀ 𝑓 ∈ ( 𝑥 ( ( 1o × 1o ) × { ∅ } ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( ( 1o × 1o ) × { ∅ } ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( SetCat ‘ 2o ) ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( ( 1o × 1o ) × { ∅ } ) 𝑧 ) ) ) ) ) |
| 24 | 23 | mptru | ⊢ ( ( ( 1o × 1o ) × { ∅ } ) Fn ( 1o × 1o ) ∧ ( ( ( 1o × 1o ) × { ∅ } ) ⊆cat ( Homf ‘ ( SetCat ‘ 2o ) ) ∧ ( ¬ ∀ 𝑥 ∈ 1o ( ( Id ‘ ( SetCat ‘ 2o ) ) ‘ 𝑥 ) ∈ ( 𝑥 ( ( 1o × 1o ) × { ∅ } ) 𝑥 ) ∧ ∀ 𝑥 ∈ 1o ∀ 𝑦 ∈ 1o ∀ 𝑧 ∈ 1o ∀ 𝑓 ∈ ( 𝑥 ( ( 1o × 1o ) × { ∅ } ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( ( 1o × 1o ) × { ∅ } ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( SetCat ‘ 2o ) ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( ( 1o × 1o ) × { ∅ } ) 𝑧 ) ) ) ) |
| 25 | 4 8 5 24 | nelsubc3lem | ⊢ ∃ 𝑐 ∈ Cat ∃ 𝑗 ∃ 𝑠 ( 𝑗 Fn ( 𝑠 × 𝑠 ) ∧ ( 𝑗 ⊆cat ( Homf ‘ 𝑐 ) ∧ ( ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) ) |