| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nelsubc.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 2 |
|
nelsubc.s |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
| 3 |
|
nelsubc.0 |
⊢ ( 𝜑 → 𝑆 ≠ ∅ ) |
| 4 |
|
nelsubc.j |
⊢ ( 𝜑 → 𝐽 = ( ( 𝑆 × 𝑆 ) × { ∅ } ) ) |
| 5 |
|
nelsubc.h |
⊢ 𝐻 = ( Homf ‘ 𝐶 ) |
| 6 |
|
0ex |
⊢ ∅ ∈ V |
| 7 |
|
fnconstg |
⊢ ( ∅ ∈ V → ( ( 𝑆 × 𝑆 ) × { ∅ } ) Fn ( 𝑆 × 𝑆 ) ) |
| 8 |
6 7
|
ax-mp |
⊢ ( ( 𝑆 × 𝑆 ) × { ∅ } ) Fn ( 𝑆 × 𝑆 ) |
| 9 |
4
|
fneq1d |
⊢ ( 𝜑 → ( 𝐽 Fn ( 𝑆 × 𝑆 ) ↔ ( ( 𝑆 × 𝑆 ) × { ∅ } ) Fn ( 𝑆 × 𝑆 ) ) ) |
| 10 |
8 9
|
mpbiri |
⊢ ( 𝜑 → 𝐽 Fn ( 𝑆 × 𝑆 ) ) |
| 11 |
4
|
oveqd |
⊢ ( 𝜑 → ( 𝑝 𝐽 𝑞 ) = ( 𝑝 ( ( 𝑆 × 𝑆 ) × { ∅ } ) 𝑞 ) ) |
| 12 |
6
|
ovconst2 |
⊢ ( ( 𝑝 ∈ 𝑆 ∧ 𝑞 ∈ 𝑆 ) → ( 𝑝 ( ( 𝑆 × 𝑆 ) × { ∅ } ) 𝑞 ) = ∅ ) |
| 13 |
11 12
|
sylan9eq |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝑆 ∧ 𝑞 ∈ 𝑆 ) ) → ( 𝑝 𝐽 𝑞 ) = ∅ ) |
| 14 |
|
0ss |
⊢ ∅ ⊆ ( 𝑝 𝐻 𝑞 ) |
| 15 |
13 14
|
eqsstrdi |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝑆 ∧ 𝑞 ∈ 𝑆 ) ) → ( 𝑝 𝐽 𝑞 ) ⊆ ( 𝑝 𝐻 𝑞 ) ) |
| 16 |
15
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝑆 ∀ 𝑞 ∈ 𝑆 ( 𝑝 𝐽 𝑞 ) ⊆ ( 𝑝 𝐻 𝑞 ) ) |
| 17 |
5 1
|
homffn |
⊢ 𝐻 Fn ( 𝐵 × 𝐵 ) |
| 18 |
17
|
a1i |
⊢ ( 𝜑 → 𝐻 Fn ( 𝐵 × 𝐵 ) ) |
| 19 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
| 20 |
19
|
a1i |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 21 |
10 18 20
|
isssc |
⊢ ( 𝜑 → ( 𝐽 ⊆cat 𝐻 ↔ ( 𝑆 ⊆ 𝐵 ∧ ∀ 𝑝 ∈ 𝑆 ∀ 𝑞 ∈ 𝑆 ( 𝑝 𝐽 𝑞 ) ⊆ ( 𝑝 𝐻 𝑞 ) ) ) ) |
| 22 |
2 16 21
|
mpbir2and |
⊢ ( 𝜑 → 𝐽 ⊆cat 𝐻 ) |
| 23 |
4
|
oveqd |
⊢ ( 𝜑 → ( 𝑥 𝐽 𝑥 ) = ( 𝑥 ( ( 𝑆 × 𝑆 ) × { ∅ } ) 𝑥 ) ) |
| 24 |
6
|
ovconst2 |
⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ( ( 𝑆 × 𝑆 ) × { ∅ } ) 𝑥 ) = ∅ ) |
| 25 |
24
|
anidms |
⊢ ( 𝑥 ∈ 𝑆 → ( 𝑥 ( ( 𝑆 × 𝑆 ) × { ∅ } ) 𝑥 ) = ∅ ) |
| 26 |
23 25
|
sylan9eq |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 𝐽 𝑥 ) = ∅ ) |
| 27 |
|
nel02 |
⊢ ( ( 𝑥 𝐽 𝑥 ) = ∅ → ¬ 𝐼 ∈ ( 𝑥 𝐽 𝑥 ) ) |
| 28 |
26 27
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ¬ 𝐼 ∈ ( 𝑥 𝐽 𝑥 ) ) |
| 29 |
28
|
reximdva0 |
⊢ ( ( 𝜑 ∧ 𝑆 ≠ ∅ ) → ∃ 𝑥 ∈ 𝑆 ¬ 𝐼 ∈ ( 𝑥 𝐽 𝑥 ) ) |
| 30 |
3 29
|
mpdan |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑆 ¬ 𝐼 ∈ ( 𝑥 𝐽 𝑥 ) ) |
| 31 |
|
rexnal |
⊢ ( ∃ 𝑥 ∈ 𝑆 ¬ 𝐼 ∈ ( 𝑥 𝐽 𝑥 ) ↔ ¬ ∀ 𝑥 ∈ 𝑆 𝐼 ∈ ( 𝑥 𝐽 𝑥 ) ) |
| 32 |
30 31
|
sylib |
⊢ ( 𝜑 → ¬ ∀ 𝑥 ∈ 𝑆 𝐼 ∈ ( 𝑥 𝐽 𝑥 ) ) |
| 33 |
4
|
oveqd |
⊢ ( 𝜑 → ( 𝑥 𝐽 𝑦 ) = ( 𝑥 ( ( 𝑆 × 𝑆 ) × { ∅ } ) 𝑦 ) ) |
| 34 |
6
|
ovconst2 |
⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 ( ( 𝑆 × 𝑆 ) × { ∅ } ) 𝑦 ) = ∅ ) |
| 35 |
33 34
|
sylan9eq |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 𝐽 𝑦 ) = ∅ ) |
| 36 |
|
rzal |
⊢ ( ( 𝑥 𝐽 𝑦 ) = ∅ → ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) 𝜓 ) |
| 37 |
35 36
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) 𝜓 ) |
| 38 |
37
|
ralrimivw |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) 𝜓 ) |
| 39 |
38
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) 𝜓 ) |
| 40 |
32 39
|
jca |
⊢ ( 𝜑 → ( ¬ ∀ 𝑥 ∈ 𝑆 𝐼 ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) 𝜓 ) ) |
| 41 |
10 22 40
|
jca32 |
⊢ ( 𝜑 → ( 𝐽 Fn ( 𝑆 × 𝑆 ) ∧ ( 𝐽 ⊆cat 𝐻 ∧ ( ¬ ∀ 𝑥 ∈ 𝑆 𝐼 ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) 𝜓 ) ) ) ) |