Metamath Proof Explorer


Theorem nelsubc

Description: An empty "hom-set" for non-empty base satisfies all conditions for a subcategory but the existence of identity morphisms. (Contributed by Zhi Wang, 5-Nov-2025)

Ref Expression
Hypotheses nelsubc.b 𝐵 = ( Base ‘ 𝐶 )
nelsubc.s ( 𝜑𝑆𝐵 )
nelsubc.0 ( 𝜑𝑆 ≠ ∅ )
nelsubc.j ( 𝜑𝐽 = ( ( 𝑆 × 𝑆 ) × { ∅ } ) )
nelsubc.h 𝐻 = ( Homf𝐶 )
nelsubc.i 1 = ( Id ‘ 𝐶 )
nelsubc.o · = ( comp ‘ 𝐶 )
Assertion nelsubc ( 𝜑 → ( 𝐽 Fn ( 𝑆 × 𝑆 ) ∧ ( 𝐽cat 𝐻 ∧ ( ¬ ∀ 𝑥𝑆 ( 1𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦· 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 nelsubc.b 𝐵 = ( Base ‘ 𝐶 )
2 nelsubc.s ( 𝜑𝑆𝐵 )
3 nelsubc.0 ( 𝜑𝑆 ≠ ∅ )
4 nelsubc.j ( 𝜑𝐽 = ( ( 𝑆 × 𝑆 ) × { ∅ } ) )
5 nelsubc.h 𝐻 = ( Homf𝐶 )
6 nelsubc.i 1 = ( Id ‘ 𝐶 )
7 nelsubc.o · = ( comp ‘ 𝐶 )
8 1 2 3 4 5 nelsubclem ( 𝜑 → ( 𝐽 Fn ( 𝑆 × 𝑆 ) ∧ ( 𝐽cat 𝐻 ∧ ( ¬ ∀ 𝑥𝑆 ( 1𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦· 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) ) )