Description: An empty "hom-set" for non-empty base satisfies all conditions for a subcategory but the existence of identity morphisms. (Contributed by Zhi Wang, 5-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nelsubc.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| nelsubc.s | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) | ||
| nelsubc.0 | ⊢ ( 𝜑 → 𝑆 ≠ ∅ ) | ||
| nelsubc.j | ⊢ ( 𝜑 → 𝐽 = ( ( 𝑆 × 𝑆 ) × { ∅ } ) ) | ||
| nelsubc.h | ⊢ 𝐻 = ( Homf ‘ 𝐶 ) | ||
| nelsubc.i | ⊢ 1 = ( Id ‘ 𝐶 ) | ||
| nelsubc.o | ⊢ · = ( comp ‘ 𝐶 ) | ||
| Assertion | nelsubc | ⊢ ( 𝜑 → ( 𝐽 Fn ( 𝑆 × 𝑆 ) ∧ ( 𝐽 ⊆cat 𝐻 ∧ ( ¬ ∀ 𝑥 ∈ 𝑆 ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelsubc.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | nelsubc.s | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) | |
| 3 | nelsubc.0 | ⊢ ( 𝜑 → 𝑆 ≠ ∅ ) | |
| 4 | nelsubc.j | ⊢ ( 𝜑 → 𝐽 = ( ( 𝑆 × 𝑆 ) × { ∅ } ) ) | |
| 5 | nelsubc.h | ⊢ 𝐻 = ( Homf ‘ 𝐶 ) | |
| 6 | nelsubc.i | ⊢ 1 = ( Id ‘ 𝐶 ) | |
| 7 | nelsubc.o | ⊢ · = ( comp ‘ 𝐶 ) | |
| 8 | 1 2 3 4 5 | nelsubclem | ⊢ ( 𝜑 → ( 𝐽 Fn ( 𝑆 × 𝑆 ) ∧ ( 𝐽 ⊆cat 𝐻 ∧ ( ¬ ∀ 𝑥 ∈ 𝑆 ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) ) ) |