Metamath Proof Explorer


Theorem nelsubc

Description: An empty "hom-set" for non-empty base satisfies all conditions for a subcategory but the existence of identity morphisms. (Contributed by Zhi Wang, 5-Nov-2025)

Ref Expression
Hypotheses nelsubc.b B = Base C
nelsubc.s φ S B
nelsubc.0 φ S
nelsubc.j φ J = S × S ×
nelsubc.h H = Hom 𝑓 C
nelsubc.i 1 ˙ = Id C
nelsubc.o · ˙ = comp C
Assertion nelsubc φ J Fn S × S J cat H ¬ x S 1 ˙ x x J x x S y S z S f x J y g y J z g x y · ˙ z f x J z

Proof

Step Hyp Ref Expression
1 nelsubc.b B = Base C
2 nelsubc.s φ S B
3 nelsubc.0 φ S
4 nelsubc.j φ J = S × S ×
5 nelsubc.h H = Hom 𝑓 C
6 nelsubc.i 1 ˙ = Id C
7 nelsubc.o · ˙ = comp C
8 1 2 3 4 5 nelsubclem φ J Fn S × S J cat H ¬ x S 1 ˙ x x J x x S y S z S f x J y g y J z g x y · ˙ z f x J z