Metamath Proof Explorer


Theorem nelsubc2

Description: An empty "hom-set" for non-empty base is not a subcategory. (Contributed by Zhi Wang, 5-Nov-2025)

Ref Expression
Hypotheses nelsubc.b B = Base C
nelsubc.s φ S B
nelsubc.0 φ S
nelsubc.j φ J = S × S ×
nelsubc2.c φ C Cat
Assertion nelsubc2 φ ¬ J Subcat C

Proof

Step Hyp Ref Expression
1 nelsubc.b B = Base C
2 nelsubc.s φ S B
3 nelsubc.0 φ S
4 nelsubc.j φ J = S × S ×
5 nelsubc2.c φ C Cat
6 eqid Hom 𝑓 C = Hom 𝑓 C
7 eqid Id C = Id C
8 eqid comp C = comp C
9 1 2 3 4 6 7 8 nelsubc φ J Fn S × S J cat Hom 𝑓 C ¬ x S Id C x x J x x S y S z S f x J y g y J z g x y comp C z f x J z
10 9 simprrd φ ¬ x S Id C x x J x x S y S z S f x J y g y J z g x y comp C z f x J z
11 10 simpld φ ¬ x S Id C x x J x
12 9 simpld φ J Fn S × S
13 6 7 8 5 12 issubc2 φ J Subcat C J cat Hom 𝑓 C x S Id C x x J x y S z S f x J y g y J z g x y comp C z f x J z
14 13 simplbda φ J Subcat C x S Id C x x J x y S z S f x J y g y J z g x y comp C z f x J z
15 r19.26 x S Id C x x J x y S z S f x J y g y J z g x y comp C z f x J z x S Id C x x J x x S y S z S f x J y g y J z g x y comp C z f x J z
16 14 15 sylib φ J Subcat C x S Id C x x J x x S y S z S f x J y g y J z g x y comp C z f x J z
17 16 simpld φ J Subcat C x S Id C x x J x
18 11 17 mtand φ ¬ J Subcat C