Metamath Proof Explorer


Theorem nelsubc2

Description: An empty "hom-set" for non-empty base is not a subcategory. (Contributed by Zhi Wang, 5-Nov-2025)

Ref Expression
Hypotheses nelsubc.b 𝐵 = ( Base ‘ 𝐶 )
nelsubc.s ( 𝜑𝑆𝐵 )
nelsubc.0 ( 𝜑𝑆 ≠ ∅ )
nelsubc.j ( 𝜑𝐽 = ( ( 𝑆 × 𝑆 ) × { ∅ } ) )
nelsubc2.c ( 𝜑𝐶 ∈ Cat )
Assertion nelsubc2 ( 𝜑 → ¬ 𝐽 ∈ ( Subcat ‘ 𝐶 ) )

Proof

Step Hyp Ref Expression
1 nelsubc.b 𝐵 = ( Base ‘ 𝐶 )
2 nelsubc.s ( 𝜑𝑆𝐵 )
3 nelsubc.0 ( 𝜑𝑆 ≠ ∅ )
4 nelsubc.j ( 𝜑𝐽 = ( ( 𝑆 × 𝑆 ) × { ∅ } ) )
5 nelsubc2.c ( 𝜑𝐶 ∈ Cat )
6 eqid ( Homf𝐶 ) = ( Homf𝐶 )
7 eqid ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 )
8 eqid ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 )
9 1 2 3 4 6 7 8 nelsubc ( 𝜑 → ( 𝐽 Fn ( 𝑆 × 𝑆 ) ∧ ( 𝐽cat ( Homf𝐶 ) ∧ ( ¬ ∀ 𝑥𝑆 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) ) )
10 9 simprrd ( 𝜑 → ( ¬ ∀ 𝑥𝑆 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) )
11 10 simpld ( 𝜑 → ¬ ∀ 𝑥𝑆 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) )
12 9 simpld ( 𝜑𝐽 Fn ( 𝑆 × 𝑆 ) )
13 6 7 8 5 12 issubc2 ( 𝜑 → ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) ↔ ( 𝐽cat ( Homf𝐶 ) ∧ ∀ 𝑥𝑆 ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑦𝑆𝑧𝑆𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) ) )
14 13 simplbda ( ( 𝜑𝐽 ∈ ( Subcat ‘ 𝐶 ) ) → ∀ 𝑥𝑆 ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑦𝑆𝑧𝑆𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) )
15 r19.26 ( ∀ 𝑥𝑆 ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑦𝑆𝑧𝑆𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ↔ ( ∀ 𝑥𝑆 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) )
16 14 15 sylib ( ( 𝜑𝐽 ∈ ( Subcat ‘ 𝐶 ) ) → ( ∀ 𝑥𝑆 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑥𝑆𝑦𝑆𝑧𝑆𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) )
17 16 simpld ( ( 𝜑𝐽 ∈ ( Subcat ‘ 𝐶 ) ) → ∀ 𝑥𝑆 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) )
18 11 17 mtand ( 𝜑 → ¬ 𝐽 ∈ ( Subcat ‘ 𝐶 ) )