| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nelsubc.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 2 |
|
nelsubc.s |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
| 3 |
|
nelsubc.0 |
⊢ ( 𝜑 → 𝑆 ≠ ∅ ) |
| 4 |
|
nelsubc.j |
⊢ ( 𝜑 → 𝐽 = ( ( 𝑆 × 𝑆 ) × { ∅ } ) ) |
| 5 |
|
nelsubc2.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 6 |
|
eqid |
⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) |
| 7 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
| 8 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
| 9 |
1 2 3 4 6 7 8
|
nelsubc |
⊢ ( 𝜑 → ( 𝐽 Fn ( 𝑆 × 𝑆 ) ∧ ( 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ∧ ( ¬ ∀ 𝑥 ∈ 𝑆 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) ) ) |
| 10 |
9
|
simprrd |
⊢ ( 𝜑 → ( ¬ ∀ 𝑥 ∈ 𝑆 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) |
| 11 |
10
|
simpld |
⊢ ( 𝜑 → ¬ ∀ 𝑥 ∈ 𝑆 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ) |
| 12 |
9
|
simpld |
⊢ ( 𝜑 → 𝐽 Fn ( 𝑆 × 𝑆 ) ) |
| 13 |
6 7 8 5 12
|
issubc2 |
⊢ ( 𝜑 → ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) ↔ ( 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ∧ ∀ 𝑥 ∈ 𝑆 ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) ) ) |
| 14 |
13
|
simplbda |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) → ∀ 𝑥 ∈ 𝑆 ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) |
| 15 |
|
r19.26 |
⊢ ( ∀ 𝑥 ∈ 𝑆 ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ↔ ( ∀ 𝑥 ∈ 𝑆 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) |
| 16 |
14 15
|
sylib |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) → ( ∀ 𝑥 ∈ 𝑆 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) |
| 17 |
16
|
simpld |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) → ∀ 𝑥 ∈ 𝑆 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ) |
| 18 |
11 17
|
mtand |
⊢ ( 𝜑 → ¬ 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) |