| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nelsubc3lem.c |
⊢ 𝐶 ∈ Cat |
| 2 |
|
nelsubc3lem.j |
⊢ 𝐽 ∈ V |
| 3 |
|
nelsubc3lem.s |
⊢ 𝑆 ∈ V |
| 4 |
|
nelsubc3lem.1 |
⊢ ( 𝐽 Fn ( 𝑆 × 𝑆 ) ∧ ( 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ∧ ( ¬ ∀ 𝑥 ∈ 𝑆 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) ) |
| 5 |
|
id |
⊢ ( 𝑠 = 𝑆 → 𝑠 = 𝑆 ) |
| 6 |
5
|
sqxpeqd |
⊢ ( 𝑠 = 𝑆 → ( 𝑠 × 𝑠 ) = ( 𝑆 × 𝑆 ) ) |
| 7 |
6
|
fneq2d |
⊢ ( 𝑠 = 𝑆 → ( 𝐽 Fn ( 𝑠 × 𝑠 ) ↔ 𝐽 Fn ( 𝑆 × 𝑆 ) ) ) |
| 8 |
|
raleq |
⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ↔ ∀ 𝑥 ∈ 𝑆 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ) ) |
| 9 |
8
|
notbid |
⊢ ( 𝑠 = 𝑆 → ( ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ↔ ¬ ∀ 𝑥 ∈ 𝑆 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ) ) |
| 10 |
|
raleq |
⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ↔ ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) |
| 11 |
10
|
raleqbi1dv |
⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ↔ ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) |
| 12 |
11
|
raleqbi1dv |
⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ↔ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) |
| 13 |
9 12
|
anbi12d |
⊢ ( 𝑠 = 𝑆 → ( ( ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ↔ ( ¬ ∀ 𝑥 ∈ 𝑆 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) ) |
| 14 |
13
|
anbi2d |
⊢ ( 𝑠 = 𝑆 → ( ( 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ∧ ( ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) ↔ ( 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ∧ ( ¬ ∀ 𝑥 ∈ 𝑆 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) ) ) |
| 15 |
7 14
|
anbi12d |
⊢ ( 𝑠 = 𝑆 → ( ( 𝐽 Fn ( 𝑠 × 𝑠 ) ∧ ( 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ∧ ( ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) ) ↔ ( 𝐽 Fn ( 𝑆 × 𝑆 ) ∧ ( 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ∧ ( ¬ ∀ 𝑥 ∈ 𝑆 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) ) ) ) |
| 16 |
3 15
|
spcev |
⊢ ( ( 𝐽 Fn ( 𝑆 × 𝑆 ) ∧ ( 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ∧ ( ¬ ∀ 𝑥 ∈ 𝑆 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) ) → ∃ 𝑠 ( 𝐽 Fn ( 𝑠 × 𝑠 ) ∧ ( 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ∧ ( ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) ) ) |
| 17 |
|
fneq1 |
⊢ ( 𝑗 = 𝐽 → ( 𝑗 Fn ( 𝑠 × 𝑠 ) ↔ 𝐽 Fn ( 𝑠 × 𝑠 ) ) ) |
| 18 |
|
breq1 |
⊢ ( 𝑗 = 𝐽 → ( 𝑗 ⊆cat ( Homf ‘ 𝐶 ) ↔ 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ) ) |
| 19 |
|
oveq |
⊢ ( 𝑗 = 𝐽 → ( 𝑥 𝑗 𝑥 ) = ( 𝑥 𝐽 𝑥 ) ) |
| 20 |
19
|
eleq2d |
⊢ ( 𝑗 = 𝐽 → ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ↔ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ) ) |
| 21 |
20
|
ralbidv |
⊢ ( 𝑗 = 𝐽 → ( ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ↔ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ) ) |
| 22 |
21
|
notbid |
⊢ ( 𝑗 = 𝐽 → ( ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ↔ ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ) ) |
| 23 |
|
oveq |
⊢ ( 𝑗 = 𝐽 → ( 𝑥 𝑗 𝑦 ) = ( 𝑥 𝐽 𝑦 ) ) |
| 24 |
|
oveq |
⊢ ( 𝑗 = 𝐽 → ( 𝑦 𝑗 𝑧 ) = ( 𝑦 𝐽 𝑧 ) ) |
| 25 |
|
oveq |
⊢ ( 𝑗 = 𝐽 → ( 𝑥 𝑗 𝑧 ) = ( 𝑥 𝐽 𝑧 ) ) |
| 26 |
25
|
eleq2d |
⊢ ( 𝑗 = 𝐽 → ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ↔ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) |
| 27 |
24 26
|
raleqbidv |
⊢ ( 𝑗 = 𝐽 → ( ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ↔ ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) |
| 28 |
23 27
|
raleqbidv |
⊢ ( 𝑗 = 𝐽 → ( ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ↔ ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) |
| 29 |
28
|
3ralbidv |
⊢ ( 𝑗 = 𝐽 → ( ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ↔ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) |
| 30 |
22 29
|
anbi12d |
⊢ ( 𝑗 = 𝐽 → ( ( ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ↔ ( ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) ) |
| 31 |
18 30
|
anbi12d |
⊢ ( 𝑗 = 𝐽 → ( ( 𝑗 ⊆cat ( Homf ‘ 𝐶 ) ∧ ( ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) ↔ ( 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ∧ ( ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) ) ) |
| 32 |
17 31
|
anbi12d |
⊢ ( 𝑗 = 𝐽 → ( ( 𝑗 Fn ( 𝑠 × 𝑠 ) ∧ ( 𝑗 ⊆cat ( Homf ‘ 𝐶 ) ∧ ( ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) ) ↔ ( 𝐽 Fn ( 𝑠 × 𝑠 ) ∧ ( 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ∧ ( ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) ) ) ) |
| 33 |
32
|
exbidv |
⊢ ( 𝑗 = 𝐽 → ( ∃ 𝑠 ( 𝑗 Fn ( 𝑠 × 𝑠 ) ∧ ( 𝑗 ⊆cat ( Homf ‘ 𝐶 ) ∧ ( ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) ) ↔ ∃ 𝑠 ( 𝐽 Fn ( 𝑠 × 𝑠 ) ∧ ( 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ∧ ( ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) ) ) ) |
| 34 |
2 33
|
spcev |
⊢ ( ∃ 𝑠 ( 𝐽 Fn ( 𝑠 × 𝑠 ) ∧ ( 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ∧ ( ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) ) → ∃ 𝑗 ∃ 𝑠 ( 𝑗 Fn ( 𝑠 × 𝑠 ) ∧ ( 𝑗 ⊆cat ( Homf ‘ 𝐶 ) ∧ ( ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) ) ) |
| 35 |
4 16 34
|
mp2b |
⊢ ∃ 𝑗 ∃ 𝑠 ( 𝑗 Fn ( 𝑠 × 𝑠 ) ∧ ( 𝑗 ⊆cat ( Homf ‘ 𝐶 ) ∧ ( ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) ) |
| 36 |
|
fveq2 |
⊢ ( 𝑐 = 𝐶 → ( Homf ‘ 𝑐 ) = ( Homf ‘ 𝐶 ) ) |
| 37 |
36
|
breq2d |
⊢ ( 𝑐 = 𝐶 → ( 𝑗 ⊆cat ( Homf ‘ 𝑐 ) ↔ 𝑗 ⊆cat ( Homf ‘ 𝐶 ) ) ) |
| 38 |
|
fveq2 |
⊢ ( 𝑐 = 𝐶 → ( Id ‘ 𝑐 ) = ( Id ‘ 𝐶 ) ) |
| 39 |
38
|
fveq1d |
⊢ ( 𝑐 = 𝐶 → ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) |
| 40 |
39
|
eleq1d |
⊢ ( 𝑐 = 𝐶 → ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ↔ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ) ) |
| 41 |
40
|
ralbidv |
⊢ ( 𝑐 = 𝐶 → ( ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ↔ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ) ) |
| 42 |
41
|
notbid |
⊢ ( 𝑐 = 𝐶 → ( ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ↔ ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ) ) |
| 43 |
|
fveq2 |
⊢ ( 𝑐 = 𝐶 → ( comp ‘ 𝑐 ) = ( comp ‘ 𝐶 ) ) |
| 44 |
43
|
oveqd |
⊢ ( 𝑐 = 𝐶 → ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) = ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) ) |
| 45 |
44
|
oveqd |
⊢ ( 𝑐 = 𝐶 → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) |
| 46 |
45
|
eleq1d |
⊢ ( 𝑐 = 𝐶 → ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ↔ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) |
| 47 |
46
|
ralbidv |
⊢ ( 𝑐 = 𝐶 → ( ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ↔ ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) |
| 48 |
47
|
4ralbidv |
⊢ ( 𝑐 = 𝐶 → ( ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ↔ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) |
| 49 |
42 48
|
anbi12d |
⊢ ( 𝑐 = 𝐶 → ( ( ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ↔ ( ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) ) |
| 50 |
37 49
|
anbi12d |
⊢ ( 𝑐 = 𝐶 → ( ( 𝑗 ⊆cat ( Homf ‘ 𝑐 ) ∧ ( ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) ↔ ( 𝑗 ⊆cat ( Homf ‘ 𝐶 ) ∧ ( ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) ) ) |
| 51 |
50
|
anbi2d |
⊢ ( 𝑐 = 𝐶 → ( ( 𝑗 Fn ( 𝑠 × 𝑠 ) ∧ ( 𝑗 ⊆cat ( Homf ‘ 𝑐 ) ∧ ( ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) ) ↔ ( 𝑗 Fn ( 𝑠 × 𝑠 ) ∧ ( 𝑗 ⊆cat ( Homf ‘ 𝐶 ) ∧ ( ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) ) ) ) |
| 52 |
51
|
2exbidv |
⊢ ( 𝑐 = 𝐶 → ( ∃ 𝑗 ∃ 𝑠 ( 𝑗 Fn ( 𝑠 × 𝑠 ) ∧ ( 𝑗 ⊆cat ( Homf ‘ 𝑐 ) ∧ ( ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) ) ↔ ∃ 𝑗 ∃ 𝑠 ( 𝑗 Fn ( 𝑠 × 𝑠 ) ∧ ( 𝑗 ⊆cat ( Homf ‘ 𝐶 ) ∧ ( ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) ) ) ) |
| 53 |
52
|
rspcev |
⊢ ( ( 𝐶 ∈ Cat ∧ ∃ 𝑗 ∃ 𝑠 ( 𝑗 Fn ( 𝑠 × 𝑠 ) ∧ ( 𝑗 ⊆cat ( Homf ‘ 𝐶 ) ∧ ( ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) ) ) → ∃ 𝑐 ∈ Cat ∃ 𝑗 ∃ 𝑠 ( 𝑗 Fn ( 𝑠 × 𝑠 ) ∧ ( 𝑗 ⊆cat ( Homf ‘ 𝑐 ) ∧ ( ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) ) ) |
| 54 |
1 35 53
|
mp2an |
⊢ ∃ 𝑐 ∈ Cat ∃ 𝑗 ∃ 𝑠 ( 𝑗 Fn ( 𝑠 × 𝑠 ) ∧ ( 𝑗 ⊆cat ( Homf ‘ 𝑐 ) ∧ ( ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) ) |