Metamath Proof Explorer


Theorem issubc2

Description: Elementhood in the set of subcategories. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses issubc.h H=Hom𝑓C
issubc.i 1˙=IdC
issubc.o ·˙=compC
issubc.c φCCat
issubc2.a φJFnS×S
Assertion issubc2 φJSubcatCJcatHxS1˙xxJxySzSfxJygyJzgxy·˙zfxJz

Proof

Step Hyp Ref Expression
1 issubc.h H=Hom𝑓C
2 issubc.i 1˙=IdC
3 issubc.o ·˙=compC
4 issubc.c φCCat
5 issubc2.a φJFnS×S
6 5 fndmd φdomJ=S×S
7 6 dmeqd φdomdomJ=domS×S
8 dmxpid domS×S=S
9 7 8 eqtr2di φS=domdomJ
10 1 2 3 4 9 issubc φJSubcatCJcatHxS1˙xxJxySzSfxJygyJzgxy·˙zfxJz