Description: Elementhood in the set of subcategories. (Contributed by Mario Carneiro, 4-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | issubc.h | |
|
issubc.i | |
||
issubc.o | |
||
issubc.c | |
||
issubc.s | |
||
Assertion | issubc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issubc.h | |
|
2 | issubc.i | |
|
3 | issubc.o | |
|
4 | issubc.c | |
|
5 | issubc.s | |
|
6 | simpl | |
|
7 | sscpwex | |
|
8 | simpl | |
|
9 | 8 | ss2abi | |
10 | 7 9 | ssexi | |
11 | 10 | csbex | |
12 | 11 | a1i | |
13 | df-subc | |
|
14 | 13 | fvmpts | |
15 | 6 12 14 | syl2anc | |
16 | 15 | eleq2d | |
17 | sbcel2 | |
|
18 | 17 | a1i | |
19 | elex | |
|
20 | 19 | a1i | |
21 | sscrel | |
|
22 | 21 | brrelex1i | |
23 | 22 | adantr | |
24 | 23 | a1i | |
25 | df-sbc | |
|
26 | simpr | |
|
27 | simpr | |
|
28 | simpr | |
|
29 | 28 | fveq2d | |
30 | 29 1 | eqtr4di | |
31 | 30 | adantr | |
32 | 27 31 | breq12d | |
33 | vex | |
|
34 | 33 | dmex | |
35 | 34 | dmex | |
36 | 35 | a1i | |
37 | 27 | dmeqd | |
38 | 37 | dmeqd | |
39 | simpllr | |
|
40 | 38 39 | eqtr4d | |
41 | simpr | |
|
42 | simpllr | |
|
43 | 42 | fveq2d | |
44 | 43 2 | eqtr4di | |
45 | 44 | fveq1d | |
46 | simplr | |
|
47 | 46 | oveqd | |
48 | 45 47 | eleq12d | |
49 | 46 | oveqd | |
50 | 46 | oveqd | |
51 | 42 | fveq2d | |
52 | 51 3 | eqtr4di | |
53 | 52 | oveqd | |
54 | 53 | oveqd | |
55 | 46 | oveqd | |
56 | 54 55 | eleq12d | |
57 | 50 56 | raleqbidv | |
58 | 49 57 | raleqbidv | |
59 | 41 58 | raleqbidv | |
60 | 41 59 | raleqbidv | |
61 | 48 60 | anbi12d | |
62 | 41 61 | raleqbidv | |
63 | 36 40 62 | sbcied2 | |
64 | 32 63 | anbi12d | |
65 | 64 | adantlr | |
66 | 26 65 | sbcied | |
67 | 25 66 | bitr3id | |
68 | 67 | ex | |
69 | 20 24 68 | pm5.21ndd | |
70 | 6 69 | sbcied | |
71 | 16 18 70 | 3bitr2d | |
72 | 4 5 71 | syl2anc | |