Metamath Proof Explorer


Theorem issubc

Description: Elementhood in the set of subcategories. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses issubc.h โŠขH=Hom๐‘“โกC
issubc.i โŠข1ห™=IdโกC
issubc.o โŠขยทห™=compโกC
issubc.c โŠขฯ†โ†’CโˆˆCat
issubc.s โŠขฯ†โ†’S=domโกdomโกJ
Assertion issubc โŠขฯ†โ†’JโˆˆSubcatโกCโ†”JโŠ†catHโˆงโˆ€xโˆˆS1ห™โกxโˆˆxJxโˆงโˆ€yโˆˆSโˆ€zโˆˆSโˆ€fโˆˆxJyโˆ€gโˆˆyJzgxyยทห™zfโˆˆxJz

Proof

Step Hyp Ref Expression
1 issubc.h โŠขH=Hom๐‘“โกC
2 issubc.i โŠข1ห™=IdโกC
3 issubc.o โŠขยทห™=compโกC
4 issubc.c โŠขฯ†โ†’CโˆˆCat
5 issubc.s โŠขฯ†โ†’S=domโกdomโกJ
6 simpl โŠขCโˆˆCatโˆงS=domโกdomโกJโ†’CโˆˆCat
7 sscpwex โŠขj|jโŠ†catHom๐‘“โกcโˆˆV
8 simpl โŠขjโŠ†catHom๐‘“โกcโˆง[ห™domโกdomโกj/s]ห™โˆ€xโˆˆsIdโกcโกxโˆˆxjxโˆงโˆ€yโˆˆsโˆ€zโˆˆsโˆ€fโˆˆxjyโˆ€gโˆˆyjzgxycompโกczfโˆˆxjzโ†’jโŠ†catHom๐‘“โกc
9 8 ss2abi โŠขj|jโŠ†catHom๐‘“โกcโˆง[ห™domโกdomโกj/s]ห™โˆ€xโˆˆsIdโกcโกxโˆˆxjxโˆงโˆ€yโˆˆsโˆ€zโˆˆsโˆ€fโˆˆxjyโˆ€gโˆˆyjzgxycompโกczfโˆˆxjzโŠ†j|jโŠ†catHom๐‘“โกc
10 7 9 ssexi โŠขj|jโŠ†catHom๐‘“โกcโˆง[ห™domโกdomโกj/s]ห™โˆ€xโˆˆsIdโกcโกxโˆˆxjxโˆงโˆ€yโˆˆsโˆ€zโˆˆsโˆ€fโˆˆxjyโˆ€gโˆˆyjzgxycompโกczfโˆˆxjzโˆˆV
11 10 csbex โŠขโฆ‹C/cโฆŒj|jโŠ†catHom๐‘“โกcโˆง[ห™domโกdomโกj/s]ห™โˆ€xโˆˆsIdโกcโกxโˆˆxjxโˆงโˆ€yโˆˆsโˆ€zโˆˆsโˆ€fโˆˆxjyโˆ€gโˆˆyjzgxycompโกczfโˆˆxjzโˆˆV
12 11 a1i โŠขCโˆˆCatโˆงS=domโกdomโกJโ†’โฆ‹C/cโฆŒj|jโŠ†catHom๐‘“โกcโˆง[ห™domโกdomโกj/s]ห™โˆ€xโˆˆsIdโกcโกxโˆˆxjxโˆงโˆ€yโˆˆsโˆ€zโˆˆsโˆ€fโˆˆxjyโˆ€gโˆˆyjzgxycompโกczfโˆˆxjzโˆˆV
13 df-subc โŠขSubcat=cโˆˆCatโŸผj|jโŠ†catHom๐‘“โกcโˆง[ห™domโกdomโกj/s]ห™โˆ€xโˆˆsIdโกcโกxโˆˆxjxโˆงโˆ€yโˆˆsโˆ€zโˆˆsโˆ€fโˆˆxjyโˆ€gโˆˆyjzgxycompโกczfโˆˆxjz
14 13 fvmpts โŠขCโˆˆCatโˆงโฆ‹C/cโฆŒj|jโŠ†catHom๐‘“โกcโˆง[ห™domโกdomโกj/s]ห™โˆ€xโˆˆsIdโกcโกxโˆˆxjxโˆงโˆ€yโˆˆsโˆ€zโˆˆsโˆ€fโˆˆxjyโˆ€gโˆˆyjzgxycompโกczfโˆˆxjzโˆˆVโ†’SubcatโกC=โฆ‹C/cโฆŒj|jโŠ†catHom๐‘“โกcโˆง[ห™domโกdomโกj/s]ห™โˆ€xโˆˆsIdโกcโกxโˆˆxjxโˆงโˆ€yโˆˆsโˆ€zโˆˆsโˆ€fโˆˆxjyโˆ€gโˆˆyjzgxycompโกczfโˆˆxjz
15 6 12 14 syl2anc โŠขCโˆˆCatโˆงS=domโกdomโกJโ†’SubcatโกC=โฆ‹C/cโฆŒj|jโŠ†catHom๐‘“โกcโˆง[ห™domโกdomโกj/s]ห™โˆ€xโˆˆsIdโกcโกxโˆˆxjxโˆงโˆ€yโˆˆsโˆ€zโˆˆsโˆ€fโˆˆxjyโˆ€gโˆˆyjzgxycompโกczfโˆˆxjz
16 15 eleq2d โŠขCโˆˆCatโˆงS=domโกdomโกJโ†’JโˆˆSubcatโกCโ†”Jโˆˆโฆ‹C/cโฆŒj|jโŠ†catHom๐‘“โกcโˆง[ห™domโกdomโกj/s]ห™โˆ€xโˆˆsIdโกcโกxโˆˆxjxโˆงโˆ€yโˆˆsโˆ€zโˆˆsโˆ€fโˆˆxjyโˆ€gโˆˆyjzgxycompโกczfโˆˆxjz
17 sbcel2 โŠข[ห™C/c]ห™Jโˆˆj|jโŠ†catHom๐‘“โกcโˆง[ห™domโกdomโกj/s]ห™โˆ€xโˆˆsIdโกcโกxโˆˆxjxโˆงโˆ€yโˆˆsโˆ€zโˆˆsโˆ€fโˆˆxjyโˆ€gโˆˆyjzgxycompโกczfโˆˆxjzโ†”Jโˆˆโฆ‹C/cโฆŒj|jโŠ†catHom๐‘“โกcโˆง[ห™domโกdomโกj/s]ห™โˆ€xโˆˆsIdโกcโกxโˆˆxjxโˆงโˆ€yโˆˆsโˆ€zโˆˆsโˆ€fโˆˆxjyโˆ€gโˆˆyjzgxycompโกczfโˆˆxjz
18 17 a1i โŠขCโˆˆCatโˆงS=domโกdomโกJโ†’[ห™C/c]ห™Jโˆˆj|jโŠ†catHom๐‘“โกcโˆง[ห™domโกdomโกj/s]ห™โˆ€xโˆˆsIdโกcโกxโˆˆxjxโˆงโˆ€yโˆˆsโˆ€zโˆˆsโˆ€fโˆˆxjyโˆ€gโˆˆyjzgxycompโกczfโˆˆxjzโ†”Jโˆˆโฆ‹C/cโฆŒj|jโŠ†catHom๐‘“โกcโˆง[ห™domโกdomโกj/s]ห™โˆ€xโˆˆsIdโกcโกxโˆˆxjxโˆงโˆ€yโˆˆsโˆ€zโˆˆsโˆ€fโˆˆxjyโˆ€gโˆˆyjzgxycompโกczfโˆˆxjz
19 elex โŠขJโˆˆj|jโŠ†catHom๐‘“โกcโˆง[ห™domโกdomโกj/s]ห™โˆ€xโˆˆsIdโกcโกxโˆˆxjxโˆงโˆ€yโˆˆsโˆ€zโˆˆsโˆ€fโˆˆxjyโˆ€gโˆˆyjzgxycompโกczfโˆˆxjzโ†’JโˆˆV
20 19 a1i โŠขCโˆˆCatโˆงS=domโกdomโกJโˆงc=Cโ†’Jโˆˆj|jโŠ†catHom๐‘“โกcโˆง[ห™domโกdomโกj/s]ห™โˆ€xโˆˆsIdโกcโกxโˆˆxjxโˆงโˆ€yโˆˆsโˆ€zโˆˆsโˆ€fโˆˆxjyโˆ€gโˆˆyjzgxycompโกczfโˆˆxjzโ†’JโˆˆV
21 sscrel โŠขRelโกโŠ†cat
22 21 brrelex1i โŠขJโŠ†catHโ†’JโˆˆV
23 22 adantr โŠขJโŠ†catHโˆงโˆ€xโˆˆS1ห™โกxโˆˆxJxโˆงโˆ€yโˆˆSโˆ€zโˆˆSโˆ€fโˆˆxJyโˆ€gโˆˆyJzgxyยทห™zfโˆˆxJzโ†’JโˆˆV
24 23 a1i โŠขCโˆˆCatโˆงS=domโกdomโกJโˆงc=Cโ†’JโŠ†catHโˆงโˆ€xโˆˆS1ห™โกxโˆˆxJxโˆงโˆ€yโˆˆSโˆ€zโˆˆSโˆ€fโˆˆxJyโˆ€gโˆˆyJzgxyยทห™zfโˆˆxJzโ†’JโˆˆV
25 df-sbc โŠข[ห™J/j]ห™jโŠ†catHom๐‘“โกcโˆง[ห™domโกdomโกj/s]ห™โˆ€xโˆˆsIdโกcโกxโˆˆxjxโˆงโˆ€yโˆˆsโˆ€zโˆˆsโˆ€fโˆˆxjyโˆ€gโˆˆyjzgxycompโกczfโˆˆxjzโ†”Jโˆˆj|jโŠ†catHom๐‘“โกcโˆง[ห™domโกdomโกj/s]ห™โˆ€xโˆˆsIdโกcโกxโˆˆxjxโˆงโˆ€yโˆˆsโˆ€zโˆˆsโˆ€fโˆˆxjyโˆ€gโˆˆyjzgxycompโกczfโˆˆxjz
26 simpr โŠขCโˆˆCatโˆงS=domโกdomโกJโˆงc=CโˆงJโˆˆVโ†’JโˆˆV
27 simpr โŠขCโˆˆCatโˆงS=domโกdomโกJโˆงc=Cโˆงj=Jโ†’j=J
28 simpr โŠขCโˆˆCatโˆงS=domโกdomโกJโˆงc=Cโ†’c=C
29 28 fveq2d โŠขCโˆˆCatโˆงS=domโกdomโกJโˆงc=Cโ†’Hom๐‘“โกc=Hom๐‘“โกC
30 29 1 eqtr4di โŠขCโˆˆCatโˆงS=domโกdomโกJโˆงc=Cโ†’Hom๐‘“โกc=H
31 30 adantr โŠขCโˆˆCatโˆงS=domโกdomโกJโˆงc=Cโˆงj=Jโ†’Hom๐‘“โกc=H
32 27 31 breq12d โŠขCโˆˆCatโˆงS=domโกdomโกJโˆงc=Cโˆงj=Jโ†’jโŠ†catHom๐‘“โกcโ†”JโŠ†catH
33 vex โŠขjโˆˆV
34 33 dmex โŠขdomโกjโˆˆV
35 34 dmex โŠขdomโกdomโกjโˆˆV
36 35 a1i โŠขCโˆˆCatโˆงS=domโกdomโกJโˆงc=Cโˆงj=Jโ†’domโกdomโกjโˆˆV
37 27 dmeqd โŠขCโˆˆCatโˆงS=domโกdomโกJโˆงc=Cโˆงj=Jโ†’domโกj=domโกJ
38 37 dmeqd โŠขCโˆˆCatโˆงS=domโกdomโกJโˆงc=Cโˆงj=Jโ†’domโกdomโกj=domโกdomโกJ
39 simpllr โŠขCโˆˆCatโˆงS=domโกdomโกJโˆงc=Cโˆงj=Jโ†’S=domโกdomโกJ
40 38 39 eqtr4d โŠขCโˆˆCatโˆงS=domโกdomโกJโˆงc=Cโˆงj=Jโ†’domโกdomโกj=S
41 simpr โŠขCโˆˆCatโˆงS=domโกdomโกJโˆงc=Cโˆงj=Jโˆงs=Sโ†’s=S
42 simpllr โŠขCโˆˆCatโˆงS=domโกdomโกJโˆงc=Cโˆงj=Jโˆงs=Sโ†’c=C
43 42 fveq2d โŠขCโˆˆCatโˆงS=domโกdomโกJโˆงc=Cโˆงj=Jโˆงs=Sโ†’Idโกc=IdโกC
44 43 2 eqtr4di โŠขCโˆˆCatโˆงS=domโกdomโกJโˆงc=Cโˆงj=Jโˆงs=Sโ†’Idโกc=1ห™
45 44 fveq1d โŠขCโˆˆCatโˆงS=domโกdomโกJโˆงc=Cโˆงj=Jโˆงs=Sโ†’Idโกcโกx=1ห™โกx
46 simplr โŠขCโˆˆCatโˆงS=domโกdomโกJโˆงc=Cโˆงj=Jโˆงs=Sโ†’j=J
47 46 oveqd โŠขCโˆˆCatโˆงS=domโกdomโกJโˆงc=Cโˆงj=Jโˆงs=Sโ†’xjx=xJx
48 45 47 eleq12d โŠขCโˆˆCatโˆงS=domโกdomโกJโˆงc=Cโˆงj=Jโˆงs=Sโ†’Idโกcโกxโˆˆxjxโ†”1ห™โกxโˆˆxJx
49 46 oveqd โŠขCโˆˆCatโˆงS=domโกdomโกJโˆงc=Cโˆงj=Jโˆงs=Sโ†’xjy=xJy
50 46 oveqd โŠขCโˆˆCatโˆงS=domโกdomโกJโˆงc=Cโˆงj=Jโˆงs=Sโ†’yjz=yJz
51 42 fveq2d โŠขCโˆˆCatโˆงS=domโกdomโกJโˆงc=Cโˆงj=Jโˆงs=Sโ†’compโกc=compโกC
52 51 3 eqtr4di โŠขCโˆˆCatโˆงS=domโกdomโกJโˆงc=Cโˆงj=Jโˆงs=Sโ†’compโกc=ยทห™
53 52 oveqd โŠขCโˆˆCatโˆงS=domโกdomโกJโˆงc=Cโˆงj=Jโˆงs=Sโ†’xycompโกcz=xyยทห™z
54 53 oveqd โŠขCโˆˆCatโˆงS=domโกdomโกJโˆงc=Cโˆงj=Jโˆงs=Sโ†’gxycompโกczf=gxyยทห™zf
55 46 oveqd โŠขCโˆˆCatโˆงS=domโกdomโกJโˆงc=Cโˆงj=Jโˆงs=Sโ†’xjz=xJz
56 54 55 eleq12d โŠขCโˆˆCatโˆงS=domโกdomโกJโˆงc=Cโˆงj=Jโˆงs=Sโ†’gxycompโกczfโˆˆxjzโ†”gxyยทห™zfโˆˆxJz
57 50 56 raleqbidv โŠขCโˆˆCatโˆงS=domโกdomโกJโˆงc=Cโˆงj=Jโˆงs=Sโ†’โˆ€gโˆˆyjzgxycompโกczfโˆˆxjzโ†”โˆ€gโˆˆyJzgxyยทห™zfโˆˆxJz
58 49 57 raleqbidv โŠขCโˆˆCatโˆงS=domโกdomโกJโˆงc=Cโˆงj=Jโˆงs=Sโ†’โˆ€fโˆˆxjyโˆ€gโˆˆyjzgxycompโกczfโˆˆxjzโ†”โˆ€fโˆˆxJyโˆ€gโˆˆyJzgxyยทห™zfโˆˆxJz
59 41 58 raleqbidv โŠขCโˆˆCatโˆงS=domโกdomโกJโˆงc=Cโˆงj=Jโˆงs=Sโ†’โˆ€zโˆˆsโˆ€fโˆˆxjyโˆ€gโˆˆyjzgxycompโกczfโˆˆxjzโ†”โˆ€zโˆˆSโˆ€fโˆˆxJyโˆ€gโˆˆyJzgxyยทห™zfโˆˆxJz
60 41 59 raleqbidv โŠขCโˆˆCatโˆงS=domโกdomโกJโˆงc=Cโˆงj=Jโˆงs=Sโ†’โˆ€yโˆˆsโˆ€zโˆˆsโˆ€fโˆˆxjyโˆ€gโˆˆyjzgxycompโกczfโˆˆxjzโ†”โˆ€yโˆˆSโˆ€zโˆˆSโˆ€fโˆˆxJyโˆ€gโˆˆyJzgxyยทห™zfโˆˆxJz
61 48 60 anbi12d โŠขCโˆˆCatโˆงS=domโกdomโกJโˆงc=Cโˆงj=Jโˆงs=Sโ†’Idโกcโกxโˆˆxjxโˆงโˆ€yโˆˆsโˆ€zโˆˆsโˆ€fโˆˆxjyโˆ€gโˆˆyjzgxycompโกczfโˆˆxjzโ†”1ห™โกxโˆˆxJxโˆงโˆ€yโˆˆSโˆ€zโˆˆSโˆ€fโˆˆxJyโˆ€gโˆˆyJzgxyยทห™zfโˆˆxJz
62 41 61 raleqbidv โŠขCโˆˆCatโˆงS=domโกdomโกJโˆงc=Cโˆงj=Jโˆงs=Sโ†’โˆ€xโˆˆsIdโกcโกxโˆˆxjxโˆงโˆ€yโˆˆsโˆ€zโˆˆsโˆ€fโˆˆxjyโˆ€gโˆˆyjzgxycompโกczfโˆˆxjzโ†”โˆ€xโˆˆS1ห™โกxโˆˆxJxโˆงโˆ€yโˆˆSโˆ€zโˆˆSโˆ€fโˆˆxJyโˆ€gโˆˆyJzgxyยทห™zfโˆˆxJz
63 36 40 62 sbcied2 โŠขCโˆˆCatโˆงS=domโกdomโกJโˆงc=Cโˆงj=Jโ†’[ห™domโกdomโกj/s]ห™โˆ€xโˆˆsIdโกcโกxโˆˆxjxโˆงโˆ€yโˆˆsโˆ€zโˆˆsโˆ€fโˆˆxjyโˆ€gโˆˆyjzgxycompโกczfโˆˆxjzโ†”โˆ€xโˆˆS1ห™โกxโˆˆxJxโˆงโˆ€yโˆˆSโˆ€zโˆˆSโˆ€fโˆˆxJyโˆ€gโˆˆyJzgxyยทห™zfโˆˆxJz
64 32 63 anbi12d โŠขCโˆˆCatโˆงS=domโกdomโกJโˆงc=Cโˆงj=Jโ†’jโŠ†catHom๐‘“โกcโˆง[ห™domโกdomโกj/s]ห™โˆ€xโˆˆsIdโกcโกxโˆˆxjxโˆงโˆ€yโˆˆsโˆ€zโˆˆsโˆ€fโˆˆxjyโˆ€gโˆˆyjzgxycompโกczfโˆˆxjzโ†”JโŠ†catHโˆงโˆ€xโˆˆS1ห™โกxโˆˆxJxโˆงโˆ€yโˆˆSโˆ€zโˆˆSโˆ€fโˆˆxJyโˆ€gโˆˆyJzgxyยทห™zfโˆˆxJz
65 64 adantlr โŠขCโˆˆCatโˆงS=domโกdomโกJโˆงc=CโˆงJโˆˆVโˆงj=Jโ†’jโŠ†catHom๐‘“โกcโˆง[ห™domโกdomโกj/s]ห™โˆ€xโˆˆsIdโกcโกxโˆˆxjxโˆงโˆ€yโˆˆsโˆ€zโˆˆsโˆ€fโˆˆxjyโˆ€gโˆˆyjzgxycompโกczfโˆˆxjzโ†”JโŠ†catHโˆงโˆ€xโˆˆS1ห™โกxโˆˆxJxโˆงโˆ€yโˆˆSโˆ€zโˆˆSโˆ€fโˆˆxJyโˆ€gโˆˆyJzgxyยทห™zfโˆˆxJz
66 26 65 sbcied โŠขCโˆˆCatโˆงS=domโกdomโกJโˆงc=CโˆงJโˆˆVโ†’[ห™J/j]ห™jโŠ†catHom๐‘“โกcโˆง[ห™domโกdomโกj/s]ห™โˆ€xโˆˆsIdโกcโกxโˆˆxjxโˆงโˆ€yโˆˆsโˆ€zโˆˆsโˆ€fโˆˆxjyโˆ€gโˆˆyjzgxycompโกczfโˆˆxjzโ†”JโŠ†catHโˆงโˆ€xโˆˆS1ห™โกxโˆˆxJxโˆงโˆ€yโˆˆSโˆ€zโˆˆSโˆ€fโˆˆxJyโˆ€gโˆˆyJzgxyยทห™zfโˆˆxJz
67 25 66 bitr3id โŠขCโˆˆCatโˆงS=domโกdomโกJโˆงc=CโˆงJโˆˆVโ†’Jโˆˆj|jโŠ†catHom๐‘“โกcโˆง[ห™domโกdomโกj/s]ห™โˆ€xโˆˆsIdโกcโกxโˆˆxjxโˆงโˆ€yโˆˆsโˆ€zโˆˆsโˆ€fโˆˆxjyโˆ€gโˆˆyjzgxycompโกczfโˆˆxjzโ†”JโŠ†catHโˆงโˆ€xโˆˆS1ห™โกxโˆˆxJxโˆงโˆ€yโˆˆSโˆ€zโˆˆSโˆ€fโˆˆxJyโˆ€gโˆˆyJzgxyยทห™zfโˆˆxJz
68 67 ex โŠขCโˆˆCatโˆงS=domโกdomโกJโˆงc=Cโ†’JโˆˆVโ†’Jโˆˆj|jโŠ†catHom๐‘“โกcโˆง[ห™domโกdomโกj/s]ห™โˆ€xโˆˆsIdโกcโกxโˆˆxjxโˆงโˆ€yโˆˆsโˆ€zโˆˆsโˆ€fโˆˆxjyโˆ€gโˆˆyjzgxycompโกczfโˆˆxjzโ†”JโŠ†catHโˆงโˆ€xโˆˆS1ห™โกxโˆˆxJxโˆงโˆ€yโˆˆSโˆ€zโˆˆSโˆ€fโˆˆxJyโˆ€gโˆˆyJzgxyยทห™zfโˆˆxJz
69 20 24 68 pm5.21ndd โŠขCโˆˆCatโˆงS=domโกdomโกJโˆงc=Cโ†’Jโˆˆj|jโŠ†catHom๐‘“โกcโˆง[ห™domโกdomโกj/s]ห™โˆ€xโˆˆsIdโกcโกxโˆˆxjxโˆงโˆ€yโˆˆsโˆ€zโˆˆsโˆ€fโˆˆxjyโˆ€gโˆˆyjzgxycompโกczfโˆˆxjzโ†”JโŠ†catHโˆงโˆ€xโˆˆS1ห™โกxโˆˆxJxโˆงโˆ€yโˆˆSโˆ€zโˆˆSโˆ€fโˆˆxJyโˆ€gโˆˆyJzgxyยทห™zfโˆˆxJz
70 6 69 sbcied โŠขCโˆˆCatโˆงS=domโกdomโกJโ†’[ห™C/c]ห™Jโˆˆj|jโŠ†catHom๐‘“โกcโˆง[ห™domโกdomโกj/s]ห™โˆ€xโˆˆsIdโกcโกxโˆˆxjxโˆงโˆ€yโˆˆsโˆ€zโˆˆsโˆ€fโˆˆxjyโˆ€gโˆˆyjzgxycompโกczfโˆˆxjzโ†”JโŠ†catHโˆงโˆ€xโˆˆS1ห™โกxโˆˆxJxโˆงโˆ€yโˆˆSโˆ€zโˆˆSโˆ€fโˆˆxJyโˆ€gโˆˆyJzgxyยทห™zfโˆˆxJz
71 16 18 70 3bitr2d โŠขCโˆˆCatโˆงS=domโกdomโกJโ†’JโˆˆSubcatโกCโ†”JโŠ†catHโˆงโˆ€xโˆˆS1ห™โกxโˆˆxJxโˆงโˆ€yโˆˆSโˆ€zโˆˆSโˆ€fโˆˆxJyโˆ€gโˆˆyJzgxyยทห™zfโˆˆxJz
72 4 5 71 syl2anc โŠขฯ†โ†’JโˆˆSubcatโกCโ†”JโŠ†catHโˆงโˆ€xโˆˆS1ห™โกxโˆˆxJxโˆงโˆ€yโˆˆSโˆ€zโˆˆSโˆ€fโˆˆxJyโˆ€gโˆˆyJzgxyยทห™zfโˆˆxJz