Metamath Proof Explorer


Definition df-subc

Description: ( SubcatC ) is the set of all the subcategory specifications of the category C . Like df-subg , this is not actually a collection of categories (as in definition 4.1(a) of Adamek p. 48), but only sets which when given operations from the base category (using df-resc ) form a category. All the objects and all the morphisms of the subcategory belong to the supercategory. The identity of an object, the domain and the codomain of a morphism are the same in the subcategory and the supercategory. The composition of the subcategory is a restriction of the composition of the supercategory. (Contributed by FL, 17-Sep-2009) (Revised by Mario Carneiro, 4-Jan-2017)

Ref Expression
Assertion df-subc Subcat=cCath|hcatHom𝑓c[˙domdomh/s]˙xsIdcxxhxyszsfxhygyhzgxycompczfxhz

Detailed syntax breakdown

Step Hyp Ref Expression
0 csubc classSubcat
1 vc setvarc
2 ccat classCat
3 vh setvarh
4 3 cv setvarh
5 cssc classcat
6 chomf classHom𝑓
7 1 cv setvarc
8 7 6 cfv classHom𝑓c
9 4 8 5 wbr wffhcatHom𝑓c
10 4 cdm classdomh
11 10 cdm classdomdomh
12 vs setvars
13 vx setvarx
14 12 cv setvars
15 ccid classId
16 7 15 cfv classIdc
17 13 cv setvarx
18 17 16 cfv classIdcx
19 17 17 4 co classxhx
20 18 19 wcel wffIdcxxhx
21 vy setvary
22 vz setvarz
23 vf setvarf
24 21 cv setvary
25 17 24 4 co classxhy
26 vg setvarg
27 22 cv setvarz
28 24 27 4 co classyhz
29 26 cv setvarg
30 17 24 cop classxy
31 cco classcomp
32 7 31 cfv classcompc
33 30 27 32 co classxycompcz
34 23 cv setvarf
35 29 34 33 co classgxycompczf
36 17 27 4 co classxhz
37 35 36 wcel wffgxycompczfxhz
38 37 26 28 wral wffgyhzgxycompczfxhz
39 38 23 25 wral wfffxhygyhzgxycompczfxhz
40 39 22 14 wral wffzsfxhygyhzgxycompczfxhz
41 40 21 14 wral wffyszsfxhygyhzgxycompczfxhz
42 20 41 wa wffIdcxxhxyszsfxhygyhzgxycompczfxhz
43 42 13 14 wral wffxsIdcxxhxyszsfxhygyhzgxycompczfxhz
44 43 12 11 wsbc wff[˙domdomh/s]˙xsIdcxxhxyszsfxhygyhzgxycompczfxhz
45 9 44 wa wffhcatHom𝑓c[˙domdomh/s]˙xsIdcxxhxyszsfxhygyhzgxycompczfxhz
46 45 3 cab classh|hcatHom𝑓c[˙domdomh/s]˙xsIdcxxhxyszsfxhygyhzgxycompczfxhz
47 1 2 46 cmpt classcCath|hcatHom𝑓c[˙domdomh/s]˙xsIdcxxhxyszsfxhygyhzgxycompczfxhz
48 0 47 wceq wffSubcat=cCath|hcatHom𝑓c[˙domdomh/s]˙xsIdcxxhxyszsfxhygyhzgxycompczfxhz