Metamath Proof Explorer


Definition df-ssc

Description: Define the subset relation for subcategories. Despite the name, this is not really a "category-aware" definition, which is to say it makes no explicit references to homsets or composition; instead this is a subset-like relation on the functions that are used as subcategory specifications in df-subc , which makes it play an analogous role to the subset relation applied to the subgroups of a group. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Assertion df-ssc cat=hj|tjFnt×ts𝒫thxs×s𝒫jx

Detailed syntax breakdown

Step Hyp Ref Expression
0 cssc classcat
1 vh setvarh
2 vj setvarj
3 vt setvart
4 2 cv setvarj
5 3 cv setvart
6 5 5 cxp classt×t
7 4 6 wfn wffjFnt×t
8 vs setvars
9 5 cpw class𝒫t
10 1 cv setvarh
11 vx setvarx
12 8 cv setvars
13 12 12 cxp classs×s
14 11 cv setvarx
15 14 4 cfv classjx
16 15 cpw class𝒫jx
17 11 13 16 cixp classxs×s𝒫jx
18 10 17 wcel wffhxs×s𝒫jx
19 18 8 9 wrex wffs𝒫thxs×s𝒫jx
20 7 19 wa wffjFnt×ts𝒫thxs×s𝒫jx
21 20 3 wex wfftjFnt×ts𝒫thxs×s𝒫jx
22 21 1 2 copab classhj|tjFnt×ts𝒫thxs×s𝒫jx
23 0 22 wceq wffcat=hj|tjFnt×ts𝒫thxs×s𝒫jx