| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cssc |
⊢ ⊆cat |
| 1 |
|
vh |
⊢ ℎ |
| 2 |
|
vj |
⊢ 𝑗 |
| 3 |
|
vt |
⊢ 𝑡 |
| 4 |
2
|
cv |
⊢ 𝑗 |
| 5 |
3
|
cv |
⊢ 𝑡 |
| 6 |
5 5
|
cxp |
⊢ ( 𝑡 × 𝑡 ) |
| 7 |
4 6
|
wfn |
⊢ 𝑗 Fn ( 𝑡 × 𝑡 ) |
| 8 |
|
vs |
⊢ 𝑠 |
| 9 |
5
|
cpw |
⊢ 𝒫 𝑡 |
| 10 |
1
|
cv |
⊢ ℎ |
| 11 |
|
vx |
⊢ 𝑥 |
| 12 |
8
|
cv |
⊢ 𝑠 |
| 13 |
12 12
|
cxp |
⊢ ( 𝑠 × 𝑠 ) |
| 14 |
11
|
cv |
⊢ 𝑥 |
| 15 |
14 4
|
cfv |
⊢ ( 𝑗 ‘ 𝑥 ) |
| 16 |
15
|
cpw |
⊢ 𝒫 ( 𝑗 ‘ 𝑥 ) |
| 17 |
11 13 16
|
cixp |
⊢ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝑗 ‘ 𝑥 ) |
| 18 |
10 17
|
wcel |
⊢ ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝑗 ‘ 𝑥 ) |
| 19 |
18 8 9
|
wrex |
⊢ ∃ 𝑠 ∈ 𝒫 𝑡 ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝑗 ‘ 𝑥 ) |
| 20 |
7 19
|
wa |
⊢ ( 𝑗 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑠 ∈ 𝒫 𝑡 ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝑗 ‘ 𝑥 ) ) |
| 21 |
20 3
|
wex |
⊢ ∃ 𝑡 ( 𝑗 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑠 ∈ 𝒫 𝑡 ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝑗 ‘ 𝑥 ) ) |
| 22 |
21 1 2
|
copab |
⊢ { 〈 ℎ , 𝑗 〉 ∣ ∃ 𝑡 ( 𝑗 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑠 ∈ 𝒫 𝑡 ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝑗 ‘ 𝑥 ) ) } |
| 23 |
0 22
|
wceq |
⊢ ⊆cat = { 〈 ℎ , 𝑗 〉 ∣ ∃ 𝑡 ( 𝑗 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑠 ∈ 𝒫 𝑡 ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝑗 ‘ 𝑥 ) ) } |