Metamath Proof Explorer


Theorem nelsubc

Description: An empty "hom-set" for non-empty base satisfies all conditions for a subcategory but the existence of identity morphisms. (Contributed by Zhi Wang, 5-Nov-2025)

Ref Expression
Hypotheses nelsubc.b
|- B = ( Base ` C )
nelsubc.s
|- ( ph -> S C_ B )
nelsubc.0
|- ( ph -> S =/= (/) )
nelsubc.j
|- ( ph -> J = ( ( S X. S ) X. { (/) } ) )
nelsubc.h
|- H = ( Homf ` C )
nelsubc.i
|- .1. = ( Id ` C )
nelsubc.o
|- .x. = ( comp ` C )
Assertion nelsubc
|- ( ph -> ( J Fn ( S X. S ) /\ ( J C_cat H /\ ( -. A. x e. S ( .1. ` x ) e. ( x J x ) /\ A. x e. S A. y e. S A. z e. S A. f e. ( x J y ) A. g e. ( y J z ) ( g ( <. x , y >. .x. z ) f ) e. ( x J z ) ) ) ) )

Proof

Step Hyp Ref Expression
1 nelsubc.b
 |-  B = ( Base ` C )
2 nelsubc.s
 |-  ( ph -> S C_ B )
3 nelsubc.0
 |-  ( ph -> S =/= (/) )
4 nelsubc.j
 |-  ( ph -> J = ( ( S X. S ) X. { (/) } ) )
5 nelsubc.h
 |-  H = ( Homf ` C )
6 nelsubc.i
 |-  .1. = ( Id ` C )
7 nelsubc.o
 |-  .x. = ( comp ` C )
8 1 2 3 4 5 nelsubclem
 |-  ( ph -> ( J Fn ( S X. S ) /\ ( J C_cat H /\ ( -. A. x e. S ( .1. ` x ) e. ( x J x ) /\ A. x e. S A. y e. S A. z e. S A. f e. ( x J y ) A. g e. ( y J z ) ( g ( <. x , y >. .x. z ) f ) e. ( x J z ) ) ) ) )