Description: An empty "hom-set" for non-empty base satisfies all conditions for a subcategory but the existence of identity morphisms. (Contributed by Zhi Wang, 5-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nelsubc.b | |- B = ( Base ` C ) |
|
| nelsubc.s | |- ( ph -> S C_ B ) |
||
| nelsubc.0 | |- ( ph -> S =/= (/) ) |
||
| nelsubc.j | |- ( ph -> J = ( ( S X. S ) X. { (/) } ) ) |
||
| nelsubc.h | |- H = ( Homf ` C ) |
||
| nelsubc.i | |- .1. = ( Id ` C ) |
||
| nelsubc.o | |- .x. = ( comp ` C ) |
||
| Assertion | nelsubc | |- ( ph -> ( J Fn ( S X. S ) /\ ( J C_cat H /\ ( -. A. x e. S ( .1. ` x ) e. ( x J x ) /\ A. x e. S A. y e. S A. z e. S A. f e. ( x J y ) A. g e. ( y J z ) ( g ( <. x , y >. .x. z ) f ) e. ( x J z ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelsubc.b | |- B = ( Base ` C ) |
|
| 2 | nelsubc.s | |- ( ph -> S C_ B ) |
|
| 3 | nelsubc.0 | |- ( ph -> S =/= (/) ) |
|
| 4 | nelsubc.j | |- ( ph -> J = ( ( S X. S ) X. { (/) } ) ) |
|
| 5 | nelsubc.h | |- H = ( Homf ` C ) |
|
| 6 | nelsubc.i | |- .1. = ( Id ` C ) |
|
| 7 | nelsubc.o | |- .x. = ( comp ` C ) |
|
| 8 | 1 2 3 4 5 | nelsubclem | |- ( ph -> ( J Fn ( S X. S ) /\ ( J C_cat H /\ ( -. A. x e. S ( .1. ` x ) e. ( x J x ) /\ A. x e. S A. y e. S A. z e. S A. f e. ( x J y ) A. g e. ( y J z ) ( g ( <. x , y >. .x. z ) f ) e. ( x J z ) ) ) ) ) |