| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssccatid.h |
⊢ 𝐻 = ( Homf ‘ 𝐶 ) |
| 2 |
|
ssccatid.d |
⊢ 𝐷 = ( 𝐶 ↾cat 𝐽 ) |
| 3 |
|
ssccatid.x |
⊢ · = ( comp ‘ 𝐶 ) |
| 4 |
|
ssccatid.j |
⊢ ( 𝜑 → 𝐽 ⊆cat 𝐻 ) |
| 5 |
|
ssccatid.f |
⊢ ( 𝜑 → 𝐽 Fn ( 𝑆 × 𝑆 ) ) |
| 6 |
|
ssccatid.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 7 |
|
ssccatid.i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 1 ∈ ( 𝑦 𝐽 𝑦 ) ) |
| 8 |
|
ssccatid.l |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ∧ 𝑚 ∈ ( 𝑎 𝐽 𝑏 ) ) ) → ( 1 ( 〈 𝑎 , 𝑏 〉 · 𝑏 ) 𝑚 ) = 𝑚 ) |
| 9 |
|
ssccatid.r |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ∧ 𝑚 ∈ ( 𝑎 𝐽 𝑏 ) ) ) → ( 𝑚 ( 〈 𝑎 , 𝑎 〉 · 𝑏 ) 1 ) = 𝑚 ) |
| 10 |
|
ssccatid.1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) |
| 11 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 12 |
1 11
|
homffn |
⊢ 𝐻 Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → 𝐻 Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
| 14 |
5 13 4
|
ssc1 |
⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝐶 ) ) |
| 15 |
2 11 6 5 14
|
rescbas |
⊢ ( 𝜑 → 𝑆 = ( Base ‘ 𝐷 ) ) |
| 16 |
2 11 6 5 14
|
reschom |
⊢ ( 𝜑 → 𝐽 = ( Hom ‘ 𝐷 ) ) |
| 17 |
2 11 6 5 14 3
|
rescco |
⊢ ( 𝜑 → · = ( comp ‘ 𝐷 ) ) |
| 18 |
2
|
ovexi |
⊢ 𝐷 ∈ V |
| 19 |
18
|
a1i |
⊢ ( 𝜑 → 𝐷 ∈ V ) |
| 20 |
|
biid |
⊢ ( ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐽 𝑤 ) ) ) ↔ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐽 𝑤 ) ) ) ) |
| 21 |
|
oveq2 |
⊢ ( 𝑚 = 𝑓 → ( 1 ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) 𝑚 ) = ( 1 ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) 𝑓 ) ) |
| 22 |
|
id |
⊢ ( 𝑚 = 𝑓 → 𝑚 = 𝑓 ) |
| 23 |
21 22
|
eqeq12d |
⊢ ( 𝑚 = 𝑓 → ( ( 1 ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) 𝑚 ) = 𝑚 ↔ ( 1 ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) 𝑓 ) = 𝑓 ) ) |
| 24 |
|
oveq1 |
⊢ ( 𝑎 = 𝑥 → ( 𝑎 𝐽 𝑏 ) = ( 𝑥 𝐽 𝑏 ) ) |
| 25 |
|
opeq1 |
⊢ ( 𝑎 = 𝑥 → 〈 𝑎 , 𝑏 〉 = 〈 𝑥 , 𝑏 〉 ) |
| 26 |
25
|
oveq1d |
⊢ ( 𝑎 = 𝑥 → ( 〈 𝑎 , 𝑏 〉 · 𝑏 ) = ( 〈 𝑥 , 𝑏 〉 · 𝑏 ) ) |
| 27 |
26
|
oveqd |
⊢ ( 𝑎 = 𝑥 → ( 1 ( 〈 𝑎 , 𝑏 〉 · 𝑏 ) 𝑚 ) = ( 1 ( 〈 𝑥 , 𝑏 〉 · 𝑏 ) 𝑚 ) ) |
| 28 |
27
|
eqeq1d |
⊢ ( 𝑎 = 𝑥 → ( ( 1 ( 〈 𝑎 , 𝑏 〉 · 𝑏 ) 𝑚 ) = 𝑚 ↔ ( 1 ( 〈 𝑥 , 𝑏 〉 · 𝑏 ) 𝑚 ) = 𝑚 ) ) |
| 29 |
24 28
|
raleqbidv |
⊢ ( 𝑎 = 𝑥 → ( ∀ 𝑚 ∈ ( 𝑎 𝐽 𝑏 ) ( 1 ( 〈 𝑎 , 𝑏 〉 · 𝑏 ) 𝑚 ) = 𝑚 ↔ ∀ 𝑚 ∈ ( 𝑥 𝐽 𝑏 ) ( 1 ( 〈 𝑥 , 𝑏 〉 · 𝑏 ) 𝑚 ) = 𝑚 ) ) |
| 30 |
|
oveq2 |
⊢ ( 𝑏 = 𝑦 → ( 𝑥 𝐽 𝑏 ) = ( 𝑥 𝐽 𝑦 ) ) |
| 31 |
|
opeq2 |
⊢ ( 𝑏 = 𝑦 → 〈 𝑥 , 𝑏 〉 = 〈 𝑥 , 𝑦 〉 ) |
| 32 |
|
id |
⊢ ( 𝑏 = 𝑦 → 𝑏 = 𝑦 ) |
| 33 |
31 32
|
oveq12d |
⊢ ( 𝑏 = 𝑦 → ( 〈 𝑥 , 𝑏 〉 · 𝑏 ) = ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) ) |
| 34 |
33
|
oveqd |
⊢ ( 𝑏 = 𝑦 → ( 1 ( 〈 𝑥 , 𝑏 〉 · 𝑏 ) 𝑚 ) = ( 1 ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) 𝑚 ) ) |
| 35 |
34
|
eqeq1d |
⊢ ( 𝑏 = 𝑦 → ( ( 1 ( 〈 𝑥 , 𝑏 〉 · 𝑏 ) 𝑚 ) = 𝑚 ↔ ( 1 ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) 𝑚 ) = 𝑚 ) ) |
| 36 |
30 35
|
raleqbidv |
⊢ ( 𝑏 = 𝑦 → ( ∀ 𝑚 ∈ ( 𝑥 𝐽 𝑏 ) ( 1 ( 〈 𝑥 , 𝑏 〉 · 𝑏 ) 𝑚 ) = 𝑚 ↔ ∀ 𝑚 ∈ ( 𝑥 𝐽 𝑦 ) ( 1 ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) 𝑚 ) = 𝑚 ) ) |
| 37 |
8
|
ralrimivvva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑆 ∀ 𝑏 ∈ 𝑆 ∀ 𝑚 ∈ ( 𝑎 𝐽 𝑏 ) ( 1 ( 〈 𝑎 , 𝑏 〉 · 𝑏 ) 𝑚 ) = 𝑚 ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐽 𝑤 ) ) ) ) → ∀ 𝑎 ∈ 𝑆 ∀ 𝑏 ∈ 𝑆 ∀ 𝑚 ∈ ( 𝑎 𝐽 𝑏 ) ( 1 ( 〈 𝑎 , 𝑏 〉 · 𝑏 ) 𝑚 ) = 𝑚 ) |
| 39 |
|
simpr1l |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐽 𝑤 ) ) ) ) → 𝑥 ∈ 𝑆 ) |
| 40 |
|
simpr1r |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐽 𝑤 ) ) ) ) → 𝑦 ∈ 𝑆 ) |
| 41 |
29 36 38 39 40
|
rspc2dv |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐽 𝑤 ) ) ) ) → ∀ 𝑚 ∈ ( 𝑥 𝐽 𝑦 ) ( 1 ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) 𝑚 ) = 𝑚 ) |
| 42 |
|
simpr31 |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐽 𝑤 ) ) ) ) → 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ) |
| 43 |
23 41 42
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐽 𝑤 ) ) ) ) → ( 1 ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) 𝑓 ) = 𝑓 ) |
| 44 |
|
oveq1 |
⊢ ( 𝑚 = 𝑔 → ( 𝑚 ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) 1 ) = ( 𝑔 ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) 1 ) ) |
| 45 |
|
id |
⊢ ( 𝑚 = 𝑔 → 𝑚 = 𝑔 ) |
| 46 |
44 45
|
eqeq12d |
⊢ ( 𝑚 = 𝑔 → ( ( 𝑚 ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) 1 ) = 𝑚 ↔ ( 𝑔 ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) 1 ) = 𝑔 ) ) |
| 47 |
|
oveq1 |
⊢ ( 𝑎 = 𝑦 → ( 𝑎 𝐽 𝑏 ) = ( 𝑦 𝐽 𝑏 ) ) |
| 48 |
|
id |
⊢ ( 𝑎 = 𝑦 → 𝑎 = 𝑦 ) |
| 49 |
48 48
|
opeq12d |
⊢ ( 𝑎 = 𝑦 → 〈 𝑎 , 𝑎 〉 = 〈 𝑦 , 𝑦 〉 ) |
| 50 |
49
|
oveq1d |
⊢ ( 𝑎 = 𝑦 → ( 〈 𝑎 , 𝑎 〉 · 𝑏 ) = ( 〈 𝑦 , 𝑦 〉 · 𝑏 ) ) |
| 51 |
50
|
oveqd |
⊢ ( 𝑎 = 𝑦 → ( 𝑚 ( 〈 𝑎 , 𝑎 〉 · 𝑏 ) 1 ) = ( 𝑚 ( 〈 𝑦 , 𝑦 〉 · 𝑏 ) 1 ) ) |
| 52 |
51
|
eqeq1d |
⊢ ( 𝑎 = 𝑦 → ( ( 𝑚 ( 〈 𝑎 , 𝑎 〉 · 𝑏 ) 1 ) = 𝑚 ↔ ( 𝑚 ( 〈 𝑦 , 𝑦 〉 · 𝑏 ) 1 ) = 𝑚 ) ) |
| 53 |
47 52
|
raleqbidv |
⊢ ( 𝑎 = 𝑦 → ( ∀ 𝑚 ∈ ( 𝑎 𝐽 𝑏 ) ( 𝑚 ( 〈 𝑎 , 𝑎 〉 · 𝑏 ) 1 ) = 𝑚 ↔ ∀ 𝑚 ∈ ( 𝑦 𝐽 𝑏 ) ( 𝑚 ( 〈 𝑦 , 𝑦 〉 · 𝑏 ) 1 ) = 𝑚 ) ) |
| 54 |
|
oveq2 |
⊢ ( 𝑏 = 𝑧 → ( 𝑦 𝐽 𝑏 ) = ( 𝑦 𝐽 𝑧 ) ) |
| 55 |
|
oveq2 |
⊢ ( 𝑏 = 𝑧 → ( 〈 𝑦 , 𝑦 〉 · 𝑏 ) = ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) ) |
| 56 |
55
|
oveqd |
⊢ ( 𝑏 = 𝑧 → ( 𝑚 ( 〈 𝑦 , 𝑦 〉 · 𝑏 ) 1 ) = ( 𝑚 ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) 1 ) ) |
| 57 |
56
|
eqeq1d |
⊢ ( 𝑏 = 𝑧 → ( ( 𝑚 ( 〈 𝑦 , 𝑦 〉 · 𝑏 ) 1 ) = 𝑚 ↔ ( 𝑚 ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) 1 ) = 𝑚 ) ) |
| 58 |
54 57
|
raleqbidv |
⊢ ( 𝑏 = 𝑧 → ( ∀ 𝑚 ∈ ( 𝑦 𝐽 𝑏 ) ( 𝑚 ( 〈 𝑦 , 𝑦 〉 · 𝑏 ) 1 ) = 𝑚 ↔ ∀ 𝑚 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑚 ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) 1 ) = 𝑚 ) ) |
| 59 |
9
|
ralrimivvva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑆 ∀ 𝑏 ∈ 𝑆 ∀ 𝑚 ∈ ( 𝑎 𝐽 𝑏 ) ( 𝑚 ( 〈 𝑎 , 𝑎 〉 · 𝑏 ) 1 ) = 𝑚 ) |
| 60 |
59
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐽 𝑤 ) ) ) ) → ∀ 𝑎 ∈ 𝑆 ∀ 𝑏 ∈ 𝑆 ∀ 𝑚 ∈ ( 𝑎 𝐽 𝑏 ) ( 𝑚 ( 〈 𝑎 , 𝑎 〉 · 𝑏 ) 1 ) = 𝑚 ) |
| 61 |
|
simpr2l |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐽 𝑤 ) ) ) ) → 𝑧 ∈ 𝑆 ) |
| 62 |
53 58 60 40 61
|
rspc2dv |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐽 𝑤 ) ) ) ) → ∀ 𝑚 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑚 ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) 1 ) = 𝑚 ) |
| 63 |
|
simpr32 |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐽 𝑤 ) ) ) ) → 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) |
| 64 |
46 62 63
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐽 𝑤 ) ) ) ) → ( 𝑔 ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) 1 ) = 𝑔 ) |
| 65 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐽 𝑤 ) ) ) ) → 𝜑 ) |
| 66 |
65 39 40 61 42 63 10
|
syl132anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐽 𝑤 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) |
| 67 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 68 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐽 𝑤 ) ) ) ) → 𝐶 ∈ Cat ) |
| 69 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐽 𝑤 ) ) ) ) → 𝑆 ⊆ ( Base ‘ 𝐶 ) ) |
| 70 |
69 39
|
sseldd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐽 𝑤 ) ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 71 |
69 40
|
sseldd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐽 𝑤 ) ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
| 72 |
69 61
|
sseldd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐽 𝑤 ) ) ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) |
| 73 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐽 𝑤 ) ) ) ) → 𝐽 Fn ( 𝑆 × 𝑆 ) ) |
| 74 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐽 𝑤 ) ) ) ) → 𝐽 ⊆cat 𝐻 ) |
| 75 |
73 74 39 40
|
ssc2 |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐽 𝑤 ) ) ) ) → ( 𝑥 𝐽 𝑦 ) ⊆ ( 𝑥 𝐻 𝑦 ) ) |
| 76 |
75 42
|
sseldd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐽 𝑤 ) ) ) ) → 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) |
| 77 |
1 11 67 70 71
|
homfval |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐽 𝑤 ) ) ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
| 78 |
76 77
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐽 𝑤 ) ) ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
| 79 |
73 74 40 61
|
ssc2 |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐽 𝑤 ) ) ) ) → ( 𝑦 𝐽 𝑧 ) ⊆ ( 𝑦 𝐻 𝑧 ) ) |
| 80 |
79 63
|
sseldd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐽 𝑤 ) ) ) ) → 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) |
| 81 |
1 11 67 71 72
|
homfval |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐽 𝑤 ) ) ) ) → ( 𝑦 𝐻 𝑧 ) = ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
| 82 |
80 81
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐽 𝑤 ) ) ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
| 83 |
|
simpr2r |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐽 𝑤 ) ) ) ) → 𝑤 ∈ 𝑆 ) |
| 84 |
69 83
|
sseldd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐽 𝑤 ) ) ) ) → 𝑤 ∈ ( Base ‘ 𝐶 ) ) |
| 85 |
73 74 61 83
|
ssc2 |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐽 𝑤 ) ) ) ) → ( 𝑧 𝐽 𝑤 ) ⊆ ( 𝑧 𝐻 𝑤 ) ) |
| 86 |
|
simpr33 |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐽 𝑤 ) ) ) ) → 𝑘 ∈ ( 𝑧 𝐽 𝑤 ) ) |
| 87 |
85 86
|
sseldd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐽 𝑤 ) ) ) ) → 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) |
| 88 |
1 11 67 72 84
|
homfval |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐽 𝑤 ) ) ) ) → ( 𝑧 𝐻 𝑤 ) = ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) |
| 89 |
87 88
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐽 𝑤 ) ) ) ) → 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) |
| 90 |
11 67 3 68 70 71 72 78 82 84 89
|
catass |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐽 𝑤 ) ) ) ) → ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) |
| 91 |
15 16 17 19 20 7 43 64 66 90
|
iscatd2 |
⊢ ( 𝜑 → ( 𝐷 ∈ Cat ∧ ( Id ‘ 𝐷 ) = ( 𝑦 ∈ 𝑆 ↦ 1 ) ) ) |