Metamath Proof Explorer


Theorem rescbas

Description: Base set of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017) (Proof shortened by AV, 18-Oct-2024)

Ref Expression
Hypotheses rescbas.d 𝐷 = ( 𝐶cat 𝐻 )
rescbas.b 𝐵 = ( Base ‘ 𝐶 )
rescbas.c ( 𝜑𝐶𝑉 )
rescbas.h ( 𝜑𝐻 Fn ( 𝑆 × 𝑆 ) )
rescbas.s ( 𝜑𝑆𝐵 )
Assertion rescbas ( 𝜑𝑆 = ( Base ‘ 𝐷 ) )

Proof

Step Hyp Ref Expression
1 rescbas.d 𝐷 = ( 𝐶cat 𝐻 )
2 rescbas.b 𝐵 = ( Base ‘ 𝐶 )
3 rescbas.c ( 𝜑𝐶𝑉 )
4 rescbas.h ( 𝜑𝐻 Fn ( 𝑆 × 𝑆 ) )
5 rescbas.s ( 𝜑𝑆𝐵 )
6 baseid Base = Slot ( Base ‘ ndx )
7 slotsbhcdif ( ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ∧ ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) ∧ ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) )
8 7 simp1i ( Base ‘ ndx ) ≠ ( Hom ‘ ndx )
9 6 8 setsnid ( Base ‘ ( 𝐶s 𝑆 ) ) = ( Base ‘ ( ( 𝐶s 𝑆 ) sSet ⟨ ( Hom ‘ ndx ) , 𝐻 ⟩ ) )
10 eqid ( 𝐶s 𝑆 ) = ( 𝐶s 𝑆 )
11 10 2 ressbas2 ( 𝑆𝐵𝑆 = ( Base ‘ ( 𝐶s 𝑆 ) ) )
12 5 11 syl ( 𝜑𝑆 = ( Base ‘ ( 𝐶s 𝑆 ) ) )
13 2 fvexi 𝐵 ∈ V
14 13 ssex ( 𝑆𝐵𝑆 ∈ V )
15 5 14 syl ( 𝜑𝑆 ∈ V )
16 1 3 15 4 rescval2 ( 𝜑𝐷 = ( ( 𝐶s 𝑆 ) sSet ⟨ ( Hom ‘ ndx ) , 𝐻 ⟩ ) )
17 16 fveq2d ( 𝜑 → ( Base ‘ 𝐷 ) = ( Base ‘ ( ( 𝐶s 𝑆 ) sSet ⟨ ( Hom ‘ ndx ) , 𝐻 ⟩ ) ) )
18 9 12 17 3eqtr4a ( 𝜑𝑆 = ( Base ‘ 𝐷 ) )