Step |
Hyp |
Ref |
Expression |
1 |
|
rescbas.d |
⊢ 𝐷 = ( 𝐶 ↾cat 𝐻 ) |
2 |
|
rescbas.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
3 |
|
rescbas.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
4 |
|
rescbas.h |
⊢ ( 𝜑 → 𝐻 Fn ( 𝑆 × 𝑆 ) ) |
5 |
|
rescbas.s |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
6 |
|
baseid |
⊢ Base = Slot ( Base ‘ ndx ) |
7 |
|
slotsbhcdif |
⊢ ( ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ∧ ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) ∧ ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) ) |
8 |
7
|
simp1i |
⊢ ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) |
9 |
6 8
|
setsnid |
⊢ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) = ( Base ‘ ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
10 |
|
eqid |
⊢ ( 𝐶 ↾s 𝑆 ) = ( 𝐶 ↾s 𝑆 ) |
11 |
10 2
|
ressbas2 |
⊢ ( 𝑆 ⊆ 𝐵 → 𝑆 = ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) |
12 |
5 11
|
syl |
⊢ ( 𝜑 → 𝑆 = ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) |
13 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
14 |
13
|
ssex |
⊢ ( 𝑆 ⊆ 𝐵 → 𝑆 ∈ V ) |
15 |
5 14
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
16 |
1 3 15 4
|
rescval2 |
⊢ ( 𝜑 → 𝐷 = ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
17 |
16
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝐷 ) = ( Base ‘ ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) ) |
18 |
9 12 17
|
3eqtr4a |
⊢ ( 𝜑 → 𝑆 = ( Base ‘ 𝐷 ) ) |