Metamath Proof Explorer


Theorem rescbas

Description: Base set of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017) (Proof shortened by AV, 18-Oct-2024)

Ref Expression
Hypotheses rescbas.d D = C cat H
rescbas.b B = Base C
rescbas.c φ C V
rescbas.h φ H Fn S × S
rescbas.s φ S B
Assertion rescbas φ S = Base D

Proof

Step Hyp Ref Expression
1 rescbas.d D = C cat H
2 rescbas.b B = Base C
3 rescbas.c φ C V
4 rescbas.h φ H Fn S × S
5 rescbas.s φ S B
6 baseid Base = Slot Base ndx
7 slotsbhcdif Base ndx Hom ndx Base ndx comp ndx Hom ndx comp ndx
8 7 simp1i Base ndx Hom ndx
9 6 8 setsnid Base C 𝑠 S = Base C 𝑠 S sSet Hom ndx H
10 eqid C 𝑠 S = C 𝑠 S
11 10 2 ressbas2 S B S = Base C 𝑠 S
12 5 11 syl φ S = Base C 𝑠 S
13 2 fvexi B V
14 13 ssex S B S V
15 5 14 syl φ S V
16 1 3 15 4 rescval2 φ D = C 𝑠 S sSet Hom ndx H
17 16 fveq2d φ Base D = Base C 𝑠 S sSet Hom ndx H
18 9 12 17 3eqtr4a φ S = Base D