Metamath Proof Explorer


Theorem rescbas

Description: Base set of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017) (Proof shortened by AV, 18-Oct-2024)

Ref Expression
Hypotheses rescbas.d D=CcatH
rescbas.b B=BaseC
rescbas.c φCV
rescbas.h φHFnS×S
rescbas.s φSB
Assertion rescbas φS=BaseD

Proof

Step Hyp Ref Expression
1 rescbas.d D=CcatH
2 rescbas.b B=BaseC
3 rescbas.c φCV
4 rescbas.h φHFnS×S
5 rescbas.s φSB
6 baseid Base=SlotBasendx
7 slotsbhcdif BasendxHomndxBasendxcompndxHomndxcompndx
8 7 simp1i BasendxHomndx
9 6 8 setsnid BaseC𝑠S=BaseC𝑠SsSetHomndxH
10 eqid C𝑠S=C𝑠S
11 10 2 ressbas2 SBS=BaseC𝑠S
12 5 11 syl φS=BaseC𝑠S
13 2 fvexi BV
14 13 ssex SBSV
15 5 14 syl φSV
16 1 3 15 4 rescval2 φD=C𝑠SsSetHomndxH
17 16 fveq2d φBaseD=BaseC𝑠SsSetHomndxH
18 9 12 17 3eqtr4a φS=BaseD