| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rescbas.d |
|- D = ( C |`cat H ) |
| 2 |
|
rescbas.b |
|- B = ( Base ` C ) |
| 3 |
|
rescbas.c |
|- ( ph -> C e. V ) |
| 4 |
|
rescbas.h |
|- ( ph -> H Fn ( S X. S ) ) |
| 5 |
|
rescbas.s |
|- ( ph -> S C_ B ) |
| 6 |
|
baseid |
|- Base = Slot ( Base ` ndx ) |
| 7 |
|
slotsbhcdif |
|- ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) |
| 8 |
7
|
simp1i |
|- ( Base ` ndx ) =/= ( Hom ` ndx ) |
| 9 |
6 8
|
setsnid |
|- ( Base ` ( C |`s S ) ) = ( Base ` ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) ) |
| 10 |
|
eqid |
|- ( C |`s S ) = ( C |`s S ) |
| 11 |
10 2
|
ressbas2 |
|- ( S C_ B -> S = ( Base ` ( C |`s S ) ) ) |
| 12 |
5 11
|
syl |
|- ( ph -> S = ( Base ` ( C |`s S ) ) ) |
| 13 |
2
|
fvexi |
|- B e. _V |
| 14 |
13
|
ssex |
|- ( S C_ B -> S e. _V ) |
| 15 |
5 14
|
syl |
|- ( ph -> S e. _V ) |
| 16 |
1 3 15 4
|
rescval2 |
|- ( ph -> D = ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) ) |
| 17 |
16
|
fveq2d |
|- ( ph -> ( Base ` D ) = ( Base ` ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) ) ) |
| 18 |
9 12 17
|
3eqtr4a |
|- ( ph -> S = ( Base ` D ) ) |