| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rescval.1 |
|- D = ( C |`cat H ) |
| 2 |
|
rescval2.1 |
|- ( ph -> C e. V ) |
| 3 |
|
rescval2.2 |
|- ( ph -> S e. W ) |
| 4 |
|
rescval2.3 |
|- ( ph -> H Fn ( S X. S ) ) |
| 5 |
3 3
|
xpexd |
|- ( ph -> ( S X. S ) e. _V ) |
| 6 |
|
fnex |
|- ( ( H Fn ( S X. S ) /\ ( S X. S ) e. _V ) -> H e. _V ) |
| 7 |
4 5 6
|
syl2anc |
|- ( ph -> H e. _V ) |
| 8 |
1
|
rescval |
|- ( ( C e. V /\ H e. _V ) -> D = ( ( C |`s dom dom H ) sSet <. ( Hom ` ndx ) , H >. ) ) |
| 9 |
2 7 8
|
syl2anc |
|- ( ph -> D = ( ( C |`s dom dom H ) sSet <. ( Hom ` ndx ) , H >. ) ) |
| 10 |
4
|
fndmd |
|- ( ph -> dom H = ( S X. S ) ) |
| 11 |
10
|
dmeqd |
|- ( ph -> dom dom H = dom ( S X. S ) ) |
| 12 |
|
dmxpid |
|- dom ( S X. S ) = S |
| 13 |
11 12
|
eqtrdi |
|- ( ph -> dom dom H = S ) |
| 14 |
13
|
oveq2d |
|- ( ph -> ( C |`s dom dom H ) = ( C |`s S ) ) |
| 15 |
14
|
oveq1d |
|- ( ph -> ( ( C |`s dom dom H ) sSet <. ( Hom ` ndx ) , H >. ) = ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) ) |
| 16 |
9 15
|
eqtrd |
|- ( ph -> D = ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) ) |