Step |
Hyp |
Ref |
Expression |
1 |
|
fnrel |
|- ( F Fn A -> Rel F ) |
2 |
|
df-fn |
|- ( F Fn A <-> ( Fun F /\ dom F = A ) ) |
3 |
|
eleq1a |
|- ( A e. B -> ( dom F = A -> dom F e. B ) ) |
4 |
3
|
impcom |
|- ( ( dom F = A /\ A e. B ) -> dom F e. B ) |
5 |
|
resfunexg |
|- ( ( Fun F /\ dom F e. B ) -> ( F |` dom F ) e. _V ) |
6 |
4 5
|
sylan2 |
|- ( ( Fun F /\ ( dom F = A /\ A e. B ) ) -> ( F |` dom F ) e. _V ) |
7 |
6
|
anassrs |
|- ( ( ( Fun F /\ dom F = A ) /\ A e. B ) -> ( F |` dom F ) e. _V ) |
8 |
2 7
|
sylanb |
|- ( ( F Fn A /\ A e. B ) -> ( F |` dom F ) e. _V ) |
9 |
|
resdm |
|- ( Rel F -> ( F |` dom F ) = F ) |
10 |
9
|
eleq1d |
|- ( Rel F -> ( ( F |` dom F ) e. _V <-> F e. _V ) ) |
11 |
10
|
biimpa |
|- ( ( Rel F /\ ( F |` dom F ) e. _V ) -> F e. _V ) |
12 |
1 8 11
|
syl2an2r |
|- ( ( F Fn A /\ A e. B ) -> F e. _V ) |