Metamath Proof Explorer


Theorem fnexd

Description: If the domain of a function is a set, the function is a set. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses fnexd.1
|- ( ph -> F Fn A )
fnexd.2
|- ( ph -> A e. V )
Assertion fnexd
|- ( ph -> F e. _V )

Proof

Step Hyp Ref Expression
1 fnexd.1
 |-  ( ph -> F Fn A )
2 fnexd.2
 |-  ( ph -> A e. V )
3 fnex
 |-  ( ( F Fn A /\ A e. V ) -> F e. _V )
4 1 2 3 syl2anc
 |-  ( ph -> F e. _V )