Metamath Proof Explorer


Theorem fnexd

Description: If the domain of a function is a set, the function is a set. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses fnexd.1 φ F Fn A
fnexd.2 φ A V
Assertion fnexd φ F V

Proof

Step Hyp Ref Expression
1 fnexd.1 φ F Fn A
2 fnexd.2 φ A V
3 fnex F Fn A A V F V
4 1 2 3 syl2anc φ F V