Metamath Proof Explorer
Description: If the domain of a function is a set, the function is a set.
(Contributed by Glauco Siliprandi, 23-Oct-2021)
|
|
Ref |
Expression |
|
Hypotheses |
fnexd.1 |
|
|
|
fnexd.2 |
|
|
Assertion |
fnexd |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
fnexd.1 |
|
2 |
|
fnexd.2 |
|
3 |
|
fnex |
|
4 |
1 2 3
|
syl2anc |
|