Metamath Proof Explorer


Theorem ssc2

Description: Infer subset relation on morphisms from the subcategory subset relation. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses ssc2.1 ( 𝜑𝐻 Fn ( 𝑆 × 𝑆 ) )
ssc2.2 ( 𝜑𝐻cat 𝐽 )
ssc2.3 ( 𝜑𝑋𝑆 )
ssc2.4 ( 𝜑𝑌𝑆 )
Assertion ssc2 ( 𝜑 → ( 𝑋 𝐻 𝑌 ) ⊆ ( 𝑋 𝐽 𝑌 ) )

Proof

Step Hyp Ref Expression
1 ssc2.1 ( 𝜑𝐻 Fn ( 𝑆 × 𝑆 ) )
2 ssc2.2 ( 𝜑𝐻cat 𝐽 )
3 ssc2.3 ( 𝜑𝑋𝑆 )
4 ssc2.4 ( 𝜑𝑌𝑆 )
5 eqidd ( 𝜑 → dom dom 𝐽 = dom dom 𝐽 )
6 2 5 sscfn2 ( 𝜑𝐽 Fn ( dom dom 𝐽 × dom dom 𝐽 ) )
7 sscrel Rel ⊆cat
8 7 brrelex2i ( 𝐻cat 𝐽𝐽 ∈ V )
9 dmexg ( 𝐽 ∈ V → dom 𝐽 ∈ V )
10 dmexg ( dom 𝐽 ∈ V → dom dom 𝐽 ∈ V )
11 2 8 9 10 4syl ( 𝜑 → dom dom 𝐽 ∈ V )
12 1 6 11 isssc ( 𝜑 → ( 𝐻cat 𝐽 ↔ ( 𝑆 ⊆ dom dom 𝐽 ∧ ∀ 𝑥𝑆𝑦𝑆 ( 𝑥 𝐻 𝑦 ) ⊆ ( 𝑥 𝐽 𝑦 ) ) ) )
13 2 12 mpbid ( 𝜑 → ( 𝑆 ⊆ dom dom 𝐽 ∧ ∀ 𝑥𝑆𝑦𝑆 ( 𝑥 𝐻 𝑦 ) ⊆ ( 𝑥 𝐽 𝑦 ) ) )
14 13 simprd ( 𝜑 → ∀ 𝑥𝑆𝑦𝑆 ( 𝑥 𝐻 𝑦 ) ⊆ ( 𝑥 𝐽 𝑦 ) )
15 oveq1 ( 𝑥 = 𝑋 → ( 𝑥 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑦 ) )
16 oveq1 ( 𝑥 = 𝑋 → ( 𝑥 𝐽 𝑦 ) = ( 𝑋 𝐽 𝑦 ) )
17 15 16 sseq12d ( 𝑥 = 𝑋 → ( ( 𝑥 𝐻 𝑦 ) ⊆ ( 𝑥 𝐽 𝑦 ) ↔ ( 𝑋 𝐻 𝑦 ) ⊆ ( 𝑋 𝐽 𝑦 ) ) )
18 oveq2 ( 𝑦 = 𝑌 → ( 𝑋 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑌 ) )
19 oveq2 ( 𝑦 = 𝑌 → ( 𝑋 𝐽 𝑦 ) = ( 𝑋 𝐽 𝑌 ) )
20 18 19 sseq12d ( 𝑦 = 𝑌 → ( ( 𝑋 𝐻 𝑦 ) ⊆ ( 𝑋 𝐽 𝑦 ) ↔ ( 𝑋 𝐻 𝑌 ) ⊆ ( 𝑋 𝐽 𝑌 ) ) )
21 17 20 rspc2va ( ( ( 𝑋𝑆𝑌𝑆 ) ∧ ∀ 𝑥𝑆𝑦𝑆 ( 𝑥 𝐻 𝑦 ) ⊆ ( 𝑥 𝐽 𝑦 ) ) → ( 𝑋 𝐻 𝑌 ) ⊆ ( 𝑋 𝐽 𝑌 ) )
22 3 4 14 21 syl21anc ( 𝜑 → ( 𝑋 𝐻 𝑌 ) ⊆ ( 𝑋 𝐽 𝑌 ) )