| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssc2.1 |
⊢ ( 𝜑 → 𝐻 Fn ( 𝑆 × 𝑆 ) ) |
| 2 |
|
ssc2.2 |
⊢ ( 𝜑 → 𝐻 ⊆cat 𝐽 ) |
| 3 |
|
ssc2.3 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
| 4 |
|
ssc2.4 |
⊢ ( 𝜑 → 𝑌 ∈ 𝑆 ) |
| 5 |
|
eqidd |
⊢ ( 𝜑 → dom dom 𝐽 = dom dom 𝐽 ) |
| 6 |
2 5
|
sscfn2 |
⊢ ( 𝜑 → 𝐽 Fn ( dom dom 𝐽 × dom dom 𝐽 ) ) |
| 7 |
|
sscrel |
⊢ Rel ⊆cat |
| 8 |
7
|
brrelex2i |
⊢ ( 𝐻 ⊆cat 𝐽 → 𝐽 ∈ V ) |
| 9 |
|
dmexg |
⊢ ( 𝐽 ∈ V → dom 𝐽 ∈ V ) |
| 10 |
|
dmexg |
⊢ ( dom 𝐽 ∈ V → dom dom 𝐽 ∈ V ) |
| 11 |
2 8 9 10
|
4syl |
⊢ ( 𝜑 → dom dom 𝐽 ∈ V ) |
| 12 |
1 6 11
|
isssc |
⊢ ( 𝜑 → ( 𝐻 ⊆cat 𝐽 ↔ ( 𝑆 ⊆ dom dom 𝐽 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 𝐻 𝑦 ) ⊆ ( 𝑥 𝐽 𝑦 ) ) ) ) |
| 13 |
2 12
|
mpbid |
⊢ ( 𝜑 → ( 𝑆 ⊆ dom dom 𝐽 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 𝐻 𝑦 ) ⊆ ( 𝑥 𝐽 𝑦 ) ) ) |
| 14 |
13
|
simprd |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 𝐻 𝑦 ) ⊆ ( 𝑥 𝐽 𝑦 ) ) |
| 15 |
|
oveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑦 ) ) |
| 16 |
|
oveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 𝐽 𝑦 ) = ( 𝑋 𝐽 𝑦 ) ) |
| 17 |
15 16
|
sseq12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 𝐻 𝑦 ) ⊆ ( 𝑥 𝐽 𝑦 ) ↔ ( 𝑋 𝐻 𝑦 ) ⊆ ( 𝑋 𝐽 𝑦 ) ) ) |
| 18 |
|
oveq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑌 ) ) |
| 19 |
|
oveq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 𝐽 𝑦 ) = ( 𝑋 𝐽 𝑌 ) ) |
| 20 |
18 19
|
sseq12d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 𝐻 𝑦 ) ⊆ ( 𝑋 𝐽 𝑦 ) ↔ ( 𝑋 𝐻 𝑌 ) ⊆ ( 𝑋 𝐽 𝑌 ) ) ) |
| 21 |
17 20
|
rspc2va |
⊢ ( ( ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 𝐻 𝑦 ) ⊆ ( 𝑥 𝐽 𝑦 ) ) → ( 𝑋 𝐻 𝑌 ) ⊆ ( 𝑋 𝐽 𝑌 ) ) |
| 22 |
3 4 14 21
|
syl21anc |
⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) ⊆ ( 𝑋 𝐽 𝑌 ) ) |