| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resccat.d |
⊢ 𝐷 = ( 𝐶 ↾cat 𝐽 ) |
| 2 |
|
resccat.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 3 |
|
resccat.s |
⊢ 𝑆 = ( Base ‘ 𝐸 ) |
| 4 |
|
resccat.j |
⊢ 𝐽 = ( Homf ‘ 𝐸 ) |
| 5 |
|
resccat.x |
⊢ · = ( comp ‘ 𝐶 ) |
| 6 |
|
resccat.xb |
⊢ ∙ = ( comp ‘ 𝐸 ) |
| 7 |
|
resccat.1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ) |
| 8 |
|
resccat.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑉 ) |
| 9 |
|
resccat.ss |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
| 10 |
|
resccatlem.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑈 ) |
| 11 |
4 3
|
homffn |
⊢ 𝐽 Fn ( 𝑆 × 𝑆 ) |
| 12 |
11
|
a1i |
⊢ ( 𝜑 → 𝐽 Fn ( 𝑆 × 𝑆 ) ) |
| 13 |
1 2 10 12 9
|
reschomf |
⊢ ( 𝜑 → 𝐽 = ( Homf ‘ 𝐷 ) ) |
| 14 |
13 4
|
eqtr3di |
⊢ ( 𝜑 → ( Homf ‘ 𝐷 ) = ( Homf ‘ 𝐸 ) ) |
| 15 |
7
|
ralrimivva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ) |
| 16 |
15
|
ralrimivvva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ) |
| 17 |
|
eqid |
⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) |
| 18 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
| 19 |
1 2 10 12 9
|
rescbas |
⊢ ( 𝜑 → 𝑆 = ( Base ‘ 𝐷 ) ) |
| 20 |
3
|
a1i |
⊢ ( 𝜑 → 𝑆 = ( Base ‘ 𝐸 ) ) |
| 21 |
17 6 18 19 20 14
|
comfeq |
⊢ ( 𝜑 → ( ( compf ‘ 𝐷 ) = ( compf ‘ 𝐸 ) ↔ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ) ) |
| 22 |
1 2 10 12 9
|
reschom |
⊢ ( 𝜑 → 𝐽 = ( Hom ‘ 𝐷 ) ) |
| 23 |
22
|
oveqd |
⊢ ( 𝜑 → ( 𝑥 𝐽 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) |
| 24 |
22
|
oveqd |
⊢ ( 𝜑 → ( 𝑦 𝐽 𝑧 ) = ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) |
| 25 |
1 2 10 12 9 5
|
rescco |
⊢ ( 𝜑 → · = ( comp ‘ 𝐷 ) ) |
| 26 |
25
|
oveqd |
⊢ ( 𝜑 → ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) = ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) ) |
| 27 |
26
|
oveqd |
⊢ ( 𝜑 → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ) |
| 28 |
27
|
eqeq1d |
⊢ ( 𝜑 → ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ↔ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ) ) |
| 29 |
24 28
|
raleqbidv |
⊢ ( 𝜑 → ( ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ↔ ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ) ) |
| 30 |
23 29
|
raleqbidv |
⊢ ( 𝜑 → ( ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ↔ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ) ) |
| 31 |
30
|
3ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ↔ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ) ) |
| 32 |
21 31
|
bitr4d |
⊢ ( 𝜑 → ( ( compf ‘ 𝐷 ) = ( compf ‘ 𝐸 ) ↔ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ) ) |
| 33 |
16 32
|
mpbird |
⊢ ( 𝜑 → ( compf ‘ 𝐷 ) = ( compf ‘ 𝐸 ) ) |
| 34 |
1
|
ovexi |
⊢ 𝐷 ∈ V |
| 35 |
34
|
a1i |
⊢ ( 𝜑 → 𝐷 ∈ V ) |
| 36 |
14 33 35 8
|
catpropd |
⊢ ( 𝜑 → ( 𝐷 ∈ Cat ↔ 𝐸 ∈ Cat ) ) |