| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resccat.d |
⊢ 𝐷 = ( 𝐶 ↾cat 𝐽 ) |
| 2 |
|
resccat.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 3 |
|
resccat.s |
⊢ 𝑆 = ( Base ‘ 𝐸 ) |
| 4 |
|
resccat.j |
⊢ 𝐽 = ( Homf ‘ 𝐸 ) |
| 5 |
|
resccat.x |
⊢ · = ( comp ‘ 𝐶 ) |
| 6 |
|
resccat.xb |
⊢ ∙ = ( comp ‘ 𝐸 ) |
| 7 |
|
resccat.1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ) |
| 8 |
|
resccat.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑉 ) |
| 9 |
|
resccat.ss |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
| 10 |
7
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ V ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ) |
| 11 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ V ) → 𝐸 ∈ 𝑉 ) |
| 12 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ V ) → 𝑆 ⊆ 𝐵 ) |
| 13 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ V ) → 𝐶 ∈ V ) |
| 14 |
1 2 3 4 5 6 10 11 12 13
|
resccatlem |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ V ) → ( 𝐷 ∈ Cat ↔ 𝐸 ∈ Cat ) ) |
| 15 |
|
df-resc |
⊢ ↾cat = ( 𝑐 ∈ V , ℎ ∈ V ↦ ( ( 𝑐 ↾s dom dom ℎ ) sSet 〈 ( Hom ‘ ndx ) , ℎ 〉 ) ) |
| 16 |
15
|
reldmmpo |
⊢ Rel dom ↾cat |
| 17 |
16
|
ovprc1 |
⊢ ( ¬ 𝐶 ∈ V → ( 𝐶 ↾cat 𝐽 ) = ∅ ) |
| 18 |
1 17
|
eqtrid |
⊢ ( ¬ 𝐶 ∈ V → 𝐷 = ∅ ) |
| 19 |
|
0cat |
⊢ ∅ ∈ Cat |
| 20 |
18 19
|
eqeltrdi |
⊢ ( ¬ 𝐶 ∈ V → 𝐷 ∈ Cat ) |
| 21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ V ) → 𝐷 ∈ Cat ) |
| 22 |
|
fvprc |
⊢ ( ¬ 𝐶 ∈ V → ( Base ‘ 𝐶 ) = ∅ ) |
| 23 |
2 22
|
eqtrid |
⊢ ( ¬ 𝐶 ∈ V → 𝐵 = ∅ ) |
| 24 |
|
sseq0 |
⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝐵 = ∅ ) → 𝑆 = ∅ ) |
| 25 |
9 23 24
|
syl2an |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ V ) → 𝑆 = ∅ ) |
| 26 |
25 3
|
eqtr3di |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ V ) → ∅ = ( Base ‘ 𝐸 ) ) |
| 27 |
|
0catg |
⊢ ( ( 𝐸 ∈ 𝑉 ∧ ∅ = ( Base ‘ 𝐸 ) ) → 𝐸 ∈ Cat ) |
| 28 |
8 26 27
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ V ) → 𝐸 ∈ Cat ) |
| 29 |
21 28
|
2thd |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ V ) → ( 𝐷 ∈ Cat ↔ 𝐸 ∈ Cat ) ) |
| 30 |
14 29
|
pm2.61dan |
⊢ ( 𝜑 → ( 𝐷 ∈ Cat ↔ 𝐸 ∈ Cat ) ) |