Metamath Proof Explorer


Theorem resccat

Description: A class C restricted by the hom-sets of another set E , whose base is a subset of the base of C and whose composition is compatible with C , is a category iff E is a category. Note that the compatibility condition "resccat.1" can be weakened by removing x e. S because f e. ( x J y ) implies these. (Contributed by Zhi Wang, 6-Nov-2025)

Ref Expression
Hypotheses resccat.d 𝐷 = ( 𝐶cat 𝐽 )
resccat.b 𝐵 = ( Base ‘ 𝐶 )
resccat.s 𝑆 = ( Base ‘ 𝐸 )
resccat.j 𝐽 = ( Homf𝐸 )
resccat.x · = ( comp ‘ 𝐶 )
resccat.xb = ( comp ‘ 𝐸 )
resccat.1 ( ( ( 𝜑 ∧ ( 𝑥𝑆𝑦𝑆𝑧𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) → ( 𝑔 ( ⟨ 𝑥 , 𝑦· 𝑧 ) 𝑓 ) = ( 𝑔 ( ⟨ 𝑥 , 𝑦 𝑧 ) 𝑓 ) )
resccat.e ( 𝜑𝐸𝑉 )
resccat.ss ( 𝜑𝑆𝐵 )
Assertion resccat ( 𝜑 → ( 𝐷 ∈ Cat ↔ 𝐸 ∈ Cat ) )

Proof

Step Hyp Ref Expression
1 resccat.d 𝐷 = ( 𝐶cat 𝐽 )
2 resccat.b 𝐵 = ( Base ‘ 𝐶 )
3 resccat.s 𝑆 = ( Base ‘ 𝐸 )
4 resccat.j 𝐽 = ( Homf𝐸 )
5 resccat.x · = ( comp ‘ 𝐶 )
6 resccat.xb = ( comp ‘ 𝐸 )
7 resccat.1 ( ( ( 𝜑 ∧ ( 𝑥𝑆𝑦𝑆𝑧𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) → ( 𝑔 ( ⟨ 𝑥 , 𝑦· 𝑧 ) 𝑓 ) = ( 𝑔 ( ⟨ 𝑥 , 𝑦 𝑧 ) 𝑓 ) )
8 resccat.e ( 𝜑𝐸𝑉 )
9 resccat.ss ( 𝜑𝑆𝐵 )
10 7 adantllr ( ( ( ( 𝜑𝐶 ∈ V ) ∧ ( 𝑥𝑆𝑦𝑆𝑧𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) → ( 𝑔 ( ⟨ 𝑥 , 𝑦· 𝑧 ) 𝑓 ) = ( 𝑔 ( ⟨ 𝑥 , 𝑦 𝑧 ) 𝑓 ) )
11 8 adantr ( ( 𝜑𝐶 ∈ V ) → 𝐸𝑉 )
12 9 adantr ( ( 𝜑𝐶 ∈ V ) → 𝑆𝐵 )
13 simpr ( ( 𝜑𝐶 ∈ V ) → 𝐶 ∈ V )
14 1 2 3 4 5 6 10 11 12 13 resccatlem ( ( 𝜑𝐶 ∈ V ) → ( 𝐷 ∈ Cat ↔ 𝐸 ∈ Cat ) )
15 df-resc cat = ( 𝑐 ∈ V , ∈ V ↦ ( ( 𝑐s dom dom ) sSet ⟨ ( Hom ‘ ndx ) , ⟩ ) )
16 15 reldmmpo Rel dom ↾cat
17 16 ovprc1 ( ¬ 𝐶 ∈ V → ( 𝐶cat 𝐽 ) = ∅ )
18 1 17 eqtrid ( ¬ 𝐶 ∈ V → 𝐷 = ∅ )
19 0cat ∅ ∈ Cat
20 18 19 eqeltrdi ( ¬ 𝐶 ∈ V → 𝐷 ∈ Cat )
21 20 adantl ( ( 𝜑 ∧ ¬ 𝐶 ∈ V ) → 𝐷 ∈ Cat )
22 fvprc ( ¬ 𝐶 ∈ V → ( Base ‘ 𝐶 ) = ∅ )
23 2 22 eqtrid ( ¬ 𝐶 ∈ V → 𝐵 = ∅ )
24 sseq0 ( ( 𝑆𝐵𝐵 = ∅ ) → 𝑆 = ∅ )
25 9 23 24 syl2an ( ( 𝜑 ∧ ¬ 𝐶 ∈ V ) → 𝑆 = ∅ )
26 25 3 eqtr3di ( ( 𝜑 ∧ ¬ 𝐶 ∈ V ) → ∅ = ( Base ‘ 𝐸 ) )
27 0catg ( ( 𝐸𝑉 ∧ ∅ = ( Base ‘ 𝐸 ) ) → 𝐸 ∈ Cat )
28 8 26 27 syl2an2r ( ( 𝜑 ∧ ¬ 𝐶 ∈ V ) → 𝐸 ∈ Cat )
29 21 28 2thd ( ( 𝜑 ∧ ¬ 𝐶 ∈ V ) → ( 𝐷 ∈ Cat ↔ 𝐸 ∈ Cat ) )
30 14 29 pm2.61dan ( 𝜑 → ( 𝐷 ∈ Cat ↔ 𝐸 ∈ Cat ) )