Metamath Proof Explorer


Theorem resccat

Description: A class C restricted by the hom-sets of another set E , whose base is a subset of the base of C and whose composition is compatible with C , is a category iff E is a category. Note that the compatibility condition "resccat.1" can be weakened by removing x e. S because f e. ( x J y ) implies these. (Contributed by Zhi Wang, 6-Nov-2025)

Ref Expression
Hypotheses resccat.d D = C cat J
resccat.b B = Base C
resccat.s S = Base E
resccat.j J = Hom 𝑓 E
resccat.x · ˙ = comp C
resccat.xb ˙ = comp E
resccat.1 φ x S y S z S f x J y g y J z g x y · ˙ z f = g x y ˙ z f
resccat.e φ E V
resccat.ss φ S B
Assertion resccat φ D Cat E Cat

Proof

Step Hyp Ref Expression
1 resccat.d D = C cat J
2 resccat.b B = Base C
3 resccat.s S = Base E
4 resccat.j J = Hom 𝑓 E
5 resccat.x · ˙ = comp C
6 resccat.xb ˙ = comp E
7 resccat.1 φ x S y S z S f x J y g y J z g x y · ˙ z f = g x y ˙ z f
8 resccat.e φ E V
9 resccat.ss φ S B
10 7 adantllr φ C V x S y S z S f x J y g y J z g x y · ˙ z f = g x y ˙ z f
11 8 adantr φ C V E V
12 9 adantr φ C V S B
13 simpr φ C V C V
14 1 2 3 4 5 6 10 11 12 13 resccatlem φ C V D Cat E Cat
15 df-resc cat = c V , h V c 𝑠 dom dom h sSet Hom ndx h
16 15 reldmmpo Rel dom cat
17 16 ovprc1 ¬ C V C cat J =
18 1 17 eqtrid ¬ C V D =
19 0cat Cat
20 18 19 eqeltrdi ¬ C V D Cat
21 20 adantl φ ¬ C V D Cat
22 fvprc ¬ C V Base C =
23 2 22 eqtrid ¬ C V B =
24 sseq0 S B B = S =
25 9 23 24 syl2an φ ¬ C V S =
26 25 3 eqtr3di φ ¬ C V = Base E
27 0catg E V = Base E E Cat
28 8 26 27 syl2an2r φ ¬ C V E Cat
29 21 28 2thd φ ¬ C V D Cat E Cat
30 14 29 pm2.61dan φ D Cat E Cat