| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resccat.d |
|- D = ( C |`cat J ) |
| 2 |
|
resccat.b |
|- B = ( Base ` C ) |
| 3 |
|
resccat.s |
|- S = ( Base ` E ) |
| 4 |
|
resccat.j |
|- J = ( Homf ` E ) |
| 5 |
|
resccat.x |
|- .x. = ( comp ` C ) |
| 6 |
|
resccat.xb |
|- .xb = ( comp ` E ) |
| 7 |
|
resccat.1 |
|- ( ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) /\ ( f e. ( x J y ) /\ g e. ( y J z ) ) ) -> ( g ( <. x , y >. .x. z ) f ) = ( g ( <. x , y >. .xb z ) f ) ) |
| 8 |
|
resccat.e |
|- ( ph -> E e. V ) |
| 9 |
|
resccat.ss |
|- ( ph -> S C_ B ) |
| 10 |
7
|
adantllr |
|- ( ( ( ( ph /\ C e. _V ) /\ ( x e. S /\ y e. S /\ z e. S ) ) /\ ( f e. ( x J y ) /\ g e. ( y J z ) ) ) -> ( g ( <. x , y >. .x. z ) f ) = ( g ( <. x , y >. .xb z ) f ) ) |
| 11 |
8
|
adantr |
|- ( ( ph /\ C e. _V ) -> E e. V ) |
| 12 |
9
|
adantr |
|- ( ( ph /\ C e. _V ) -> S C_ B ) |
| 13 |
|
simpr |
|- ( ( ph /\ C e. _V ) -> C e. _V ) |
| 14 |
1 2 3 4 5 6 10 11 12 13
|
resccatlem |
|- ( ( ph /\ C e. _V ) -> ( D e. Cat <-> E e. Cat ) ) |
| 15 |
|
df-resc |
|- |`cat = ( c e. _V , h e. _V |-> ( ( c |`s dom dom h ) sSet <. ( Hom ` ndx ) , h >. ) ) |
| 16 |
15
|
reldmmpo |
|- Rel dom |`cat |
| 17 |
16
|
ovprc1 |
|- ( -. C e. _V -> ( C |`cat J ) = (/) ) |
| 18 |
1 17
|
eqtrid |
|- ( -. C e. _V -> D = (/) ) |
| 19 |
|
0cat |
|- (/) e. Cat |
| 20 |
18 19
|
eqeltrdi |
|- ( -. C e. _V -> D e. Cat ) |
| 21 |
20
|
adantl |
|- ( ( ph /\ -. C e. _V ) -> D e. Cat ) |
| 22 |
|
fvprc |
|- ( -. C e. _V -> ( Base ` C ) = (/) ) |
| 23 |
2 22
|
eqtrid |
|- ( -. C e. _V -> B = (/) ) |
| 24 |
|
sseq0 |
|- ( ( S C_ B /\ B = (/) ) -> S = (/) ) |
| 25 |
9 23 24
|
syl2an |
|- ( ( ph /\ -. C e. _V ) -> S = (/) ) |
| 26 |
25 3
|
eqtr3di |
|- ( ( ph /\ -. C e. _V ) -> (/) = ( Base ` E ) ) |
| 27 |
|
0catg |
|- ( ( E e. V /\ (/) = ( Base ` E ) ) -> E e. Cat ) |
| 28 |
8 26 27
|
syl2an2r |
|- ( ( ph /\ -. C e. _V ) -> E e. Cat ) |
| 29 |
21 28
|
2thd |
|- ( ( ph /\ -. C e. _V ) -> ( D e. Cat <-> E e. Cat ) ) |
| 30 |
14 29
|
pm2.61dan |
|- ( ph -> ( D e. Cat <-> E e. Cat ) ) |