| Step |
Hyp |
Ref |
Expression |
| 1 |
|
comfeq.1 |
⊢ · = ( comp ‘ 𝐶 ) |
| 2 |
|
comfeq.2 |
⊢ ∙ = ( comp ‘ 𝐷 ) |
| 3 |
|
comfeq.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
| 4 |
|
comfeq.3 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) |
| 5 |
|
comfeq.4 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐷 ) ) |
| 6 |
|
comfeq.5 |
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 7 |
4
|
sqxpeqd |
⊢ ( 𝜑 → ( 𝐵 × 𝐵 ) = ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
| 8 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ) |
| 9 |
7 4 8
|
mpoeq123dv |
⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ) = ( 𝑢 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) , 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ) ) |
| 10 |
|
eqid |
⊢ ( compf ‘ 𝐶 ) = ( compf ‘ 𝐶 ) |
| 11 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 12 |
10 11 3 1
|
comfffval |
⊢ ( compf ‘ 𝐶 ) = ( 𝑢 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) , 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ) |
| 13 |
9 12
|
eqtr4di |
⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ) = ( compf ‘ 𝐶 ) ) |
| 14 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
| 15 |
6
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 16 |
|
xp2nd |
⊢ ( 𝑢 ∈ ( 𝐵 × 𝐵 ) → ( 2nd ‘ 𝑢 ) ∈ 𝐵 ) |
| 17 |
16
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( 2nd ‘ 𝑢 ) ∈ 𝐵 ) |
| 18 |
4
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → 𝐵 = ( Base ‘ 𝐶 ) ) |
| 19 |
17 18
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( 2nd ‘ 𝑢 ) ∈ ( Base ‘ 𝐶 ) ) |
| 20 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ 𝐵 ) |
| 21 |
20 18
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) |
| 22 |
11 3 14 15 19 21
|
homfeqval |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) = ( ( 2nd ‘ 𝑢 ) ( Hom ‘ 𝐷 ) 𝑧 ) ) |
| 23 |
|
xp1st |
⊢ ( 𝑢 ∈ ( 𝐵 × 𝐵 ) → ( 1st ‘ 𝑢 ) ∈ 𝐵 ) |
| 24 |
23
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( 1st ‘ 𝑢 ) ∈ 𝐵 ) |
| 25 |
24 18
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( 1st ‘ 𝑢 ) ∈ ( Base ‘ 𝐶 ) ) |
| 26 |
11 3 14 15 25 19
|
homfeqval |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( 1st ‘ 𝑢 ) 𝐻 ( 2nd ‘ 𝑢 ) ) = ( ( 1st ‘ 𝑢 ) ( Hom ‘ 𝐷 ) ( 2nd ‘ 𝑢 ) ) ) |
| 27 |
|
df-ov |
⊢ ( ( 1st ‘ 𝑢 ) 𝐻 ( 2nd ‘ 𝑢 ) ) = ( 𝐻 ‘ 〈 ( 1st ‘ 𝑢 ) , ( 2nd ‘ 𝑢 ) 〉 ) |
| 28 |
|
df-ov |
⊢ ( ( 1st ‘ 𝑢 ) ( Hom ‘ 𝐷 ) ( 2nd ‘ 𝑢 ) ) = ( ( Hom ‘ 𝐷 ) ‘ 〈 ( 1st ‘ 𝑢 ) , ( 2nd ‘ 𝑢 ) 〉 ) |
| 29 |
26 27 28
|
3eqtr3g |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝐻 ‘ 〈 ( 1st ‘ 𝑢 ) , ( 2nd ‘ 𝑢 ) 〉 ) = ( ( Hom ‘ 𝐷 ) ‘ 〈 ( 1st ‘ 𝑢 ) , ( 2nd ‘ 𝑢 ) 〉 ) ) |
| 30 |
|
1st2nd2 |
⊢ ( 𝑢 ∈ ( 𝐵 × 𝐵 ) → 𝑢 = 〈 ( 1st ‘ 𝑢 ) , ( 2nd ‘ 𝑢 ) 〉 ) |
| 31 |
30
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → 𝑢 = 〈 ( 1st ‘ 𝑢 ) , ( 2nd ‘ 𝑢 ) 〉 ) |
| 32 |
31
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 〈 ( 1st ‘ 𝑢 ) , ( 2nd ‘ 𝑢 ) 〉 ) ) |
| 33 |
31
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) = ( ( Hom ‘ 𝐷 ) ‘ 〈 ( 1st ‘ 𝑢 ) , ( 2nd ‘ 𝑢 ) 〉 ) ) |
| 34 |
29 32 33
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝐻 ‘ 𝑢 ) = ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) ) |
| 35 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) = ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) |
| 36 |
22 34 35
|
mpoeq123dv |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) ( Hom ‘ 𝐷 ) 𝑧 ) , 𝑓 ∈ ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) |
| 37 |
36
|
mpoeq3dva |
⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) = ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) ( Hom ‘ 𝐷 ) 𝑧 ) , 𝑓 ∈ ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) ) |
| 38 |
5
|
sqxpeqd |
⊢ ( 𝜑 → ( 𝐵 × 𝐵 ) = ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) ) |
| 39 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) ( Hom ‘ 𝐷 ) 𝑧 ) , 𝑓 ∈ ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) ( Hom ‘ 𝐷 ) 𝑧 ) , 𝑓 ∈ ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) |
| 40 |
38 5 39
|
mpoeq123dv |
⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) ( Hom ‘ 𝐷 ) 𝑧 ) , 𝑓 ∈ ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) = ( 𝑢 ∈ ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) ( Hom ‘ 𝐷 ) 𝑧 ) , 𝑓 ∈ ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) ) |
| 41 |
37 40
|
eqtrd |
⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) = ( 𝑢 ∈ ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) ( Hom ‘ 𝐷 ) 𝑧 ) , 𝑓 ∈ ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) ) |
| 42 |
|
eqid |
⊢ ( compf ‘ 𝐷 ) = ( compf ‘ 𝐷 ) |
| 43 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 44 |
42 43 14 2
|
comfffval |
⊢ ( compf ‘ 𝐷 ) = ( 𝑢 ∈ ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) ( Hom ‘ 𝐷 ) 𝑧 ) , 𝑓 ∈ ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) |
| 45 |
41 44
|
eqtr4di |
⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) = ( compf ‘ 𝐷 ) ) |
| 46 |
13 45
|
eqeq12d |
⊢ ( 𝜑 → ( ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ) = ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) ↔ ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) ) |
| 47 |
|
ovex |
⊢ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) ∈ V |
| 48 |
|
fvex |
⊢ ( 𝐻 ‘ 𝑢 ) ∈ V |
| 49 |
47 48
|
mpoex |
⊢ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ∈ V |
| 50 |
49
|
rgen2w |
⊢ ∀ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∀ 𝑧 ∈ 𝐵 ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ∈ V |
| 51 |
|
mpo2eqb |
⊢ ( ∀ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∀ 𝑧 ∈ 𝐵 ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ∈ V → ( ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ) = ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∀ 𝑧 ∈ 𝐵 ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) ) |
| 52 |
50 51
|
ax-mp |
⊢ ( ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ) = ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∀ 𝑧 ∈ 𝐵 ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) |
| 53 |
|
vex |
⊢ 𝑥 ∈ V |
| 54 |
|
vex |
⊢ 𝑦 ∈ V |
| 55 |
53 54
|
op2ndd |
⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( 2nd ‘ 𝑢 ) = 𝑦 ) |
| 56 |
55
|
oveq1d |
⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) = ( 𝑦 𝐻 𝑧 ) ) |
| 57 |
|
fveq2 |
⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 〈 𝑥 , 𝑦 〉 ) ) |
| 58 |
|
df-ov |
⊢ ( 𝑥 𝐻 𝑦 ) = ( 𝐻 ‘ 〈 𝑥 , 𝑦 〉 ) |
| 59 |
57 58
|
eqtr4di |
⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( 𝐻 ‘ 𝑢 ) = ( 𝑥 𝐻 𝑦 ) ) |
| 60 |
|
oveq1 |
⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( 𝑢 · 𝑧 ) = ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) ) |
| 61 |
60
|
oveqd |
⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) |
| 62 |
|
oveq1 |
⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( 𝑢 ∙ 𝑧 ) = ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) ) |
| 63 |
62
|
oveqd |
⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ) |
| 64 |
61 63
|
eqeq12d |
⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ↔ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ) ) |
| 65 |
59 64
|
raleqbidv |
⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( ∀ 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ↔ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ) ) |
| 66 |
56 65
|
raleqbidv |
⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( ∀ 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) ∀ 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ↔ ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ) ) |
| 67 |
|
ovex |
⊢ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ∈ V |
| 68 |
67
|
rgen2w |
⊢ ∀ 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) ∀ 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ∈ V |
| 69 |
|
mpo2eqb |
⊢ ( ∀ 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) ∀ 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ∈ V → ( ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ↔ ∀ 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) ∀ 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) |
| 70 |
68 69
|
ax-mp |
⊢ ( ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ↔ ∀ 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) ∀ 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) |
| 71 |
|
ralcom |
⊢ ( ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ↔ ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ) |
| 72 |
66 70 71
|
3bitr4g |
⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ↔ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ) ) |
| 73 |
72
|
ralbidv |
⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( ∀ 𝑧 ∈ 𝐵 ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ↔ ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ) ) |
| 74 |
73
|
ralxp |
⊢ ( ∀ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∀ 𝑧 ∈ 𝐵 ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ) |
| 75 |
52 74
|
bitri |
⊢ ( ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ) = ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ) |
| 76 |
46 75
|
bitr3di |
⊢ ( 𝜑 → ( ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ) ) |