| Step |
Hyp |
Ref |
Expression |
| 1 |
|
setc1onsubc.c |
⊢ 𝐶 = { 〈 ( Base ‘ ndx ) , { ∅ } 〉 , 〈 ( Hom ‘ ndx ) , { 〈 ∅ , ∅ , 2o 〉 } 〉 , 〈 ( comp ‘ ndx ) , { 〈 〈 ∅ , ∅ 〉 , ∅ , · 〉 } 〉 } |
| 2 |
|
setc1onsubc.x |
⊢ · = ( 𝑓 ∈ 2o , 𝑔 ∈ 2o ↦ ( 𝑓 ∩ 𝑔 ) ) |
| 3 |
|
setc1onsubc.e |
⊢ 𝐸 = ( SetCat ‘ 1o ) |
| 4 |
|
setc1onsubc.j |
⊢ 𝐽 = ( Homf ‘ 𝐸 ) |
| 5 |
|
setc1onsubc.s |
⊢ 𝑆 = 1o |
| 6 |
|
setc1onsubc.h |
⊢ 𝐻 = ( Homf ‘ 𝐶 ) |
| 7 |
|
setc1onsubc.i |
⊢ 1 = ( Id ‘ 𝐶 ) |
| 8 |
|
setc1onsubc.d |
⊢ 𝐷 = ( 𝐶 ↾cat 𝐽 ) |
| 9 |
|
0ss |
⊢ ∅ ⊆ 1o |
| 10 |
|
1oex |
⊢ 1o ∈ V |
| 11 |
|
df2o3 |
⊢ 2o = { ∅ , 1o } |
| 12 |
1 11 2
|
incat |
⊢ ( ( ∅ ⊆ 1o ∧ 1o ∈ V ) → ( 𝐶 ∈ Cat ∧ ( Id ‘ 𝐶 ) = ( 𝑦 ∈ { ∅ } ↦ 1o ) ) ) |
| 13 |
9 10 12
|
mp2an |
⊢ ( 𝐶 ∈ Cat ∧ ( Id ‘ 𝐶 ) = ( 𝑦 ∈ { ∅ } ↦ 1o ) ) |
| 14 |
13
|
simpli |
⊢ 𝐶 ∈ Cat |
| 15 |
3
|
setc1obas |
⊢ 1o = ( Base ‘ 𝐸 ) |
| 16 |
5 15
|
eqtri |
⊢ 𝑆 = ( Base ‘ 𝐸 ) |
| 17 |
4 16
|
homffn |
⊢ 𝐽 Fn ( 𝑆 × 𝑆 ) |
| 18 |
|
ssid |
⊢ { ∅ } ⊆ { ∅ } |
| 19 |
|
snsspr1 |
⊢ { ∅ } ⊆ { ∅ , 1o } |
| 20 |
3
|
setc1ohomfval |
⊢ { 〈 ∅ , ∅ , 1o 〉 } = ( Hom ‘ 𝐸 ) |
| 21 |
|
0lt1o |
⊢ ∅ ∈ 1o |
| 22 |
21
|
a1i |
⊢ ( ⊤ → ∅ ∈ 1o ) |
| 23 |
4 15 20 22 22
|
homfval |
⊢ ( ⊤ → ( ∅ 𝐽 ∅ ) = ( ∅ { 〈 ∅ , ∅ , 1o 〉 } ∅ ) ) |
| 24 |
23
|
mptru |
⊢ ( ∅ 𝐽 ∅ ) = ( ∅ { 〈 ∅ , ∅ , 1o 〉 } ∅ ) |
| 25 |
10
|
ovsn2 |
⊢ ( ∅ { 〈 ∅ , ∅ , 1o 〉 } ∅ ) = 1o |
| 26 |
|
df1o2 |
⊢ 1o = { ∅ } |
| 27 |
24 25 26
|
3eqtri |
⊢ ( ∅ 𝐽 ∅ ) = { ∅ } |
| 28 |
|
snex |
⊢ { ∅ } ∈ V |
| 29 |
1 28
|
catbas |
⊢ { ∅ } = ( Base ‘ 𝐶 ) |
| 30 |
|
snex |
⊢ { 〈 ∅ , ∅ , 2o 〉 } ∈ V |
| 31 |
1 30
|
cathomfval |
⊢ { 〈 ∅ , ∅ , 2o 〉 } = ( Hom ‘ 𝐶 ) |
| 32 |
|
0ex |
⊢ ∅ ∈ V |
| 33 |
32
|
snid |
⊢ ∅ ∈ { ∅ } |
| 34 |
33
|
a1i |
⊢ ( ⊤ → ∅ ∈ { ∅ } ) |
| 35 |
6 29 31 34 34
|
homfval |
⊢ ( ⊤ → ( ∅ 𝐻 ∅ ) = ( ∅ { 〈 ∅ , ∅ , 2o 〉 } ∅ ) ) |
| 36 |
35
|
mptru |
⊢ ( ∅ 𝐻 ∅ ) = ( ∅ { 〈 ∅ , ∅ , 2o 〉 } ∅ ) |
| 37 |
|
2oex |
⊢ 2o ∈ V |
| 38 |
37
|
ovsn2 |
⊢ ( ∅ { 〈 ∅ , ∅ , 2o 〉 } ∅ ) = 2o |
| 39 |
36 38 11
|
3eqtri |
⊢ ( ∅ 𝐻 ∅ ) = { ∅ , 1o } |
| 40 |
19 27 39
|
3sstr4i |
⊢ ( ∅ 𝐽 ∅ ) ⊆ ( ∅ 𝐻 ∅ ) |
| 41 |
|
oveq1 |
⊢ ( 𝑝 = ∅ → ( 𝑝 𝐽 𝑞 ) = ( ∅ 𝐽 𝑞 ) ) |
| 42 |
|
oveq1 |
⊢ ( 𝑝 = ∅ → ( 𝑝 𝐻 𝑞 ) = ( ∅ 𝐻 𝑞 ) ) |
| 43 |
41 42
|
sseq12d |
⊢ ( 𝑝 = ∅ → ( ( 𝑝 𝐽 𝑞 ) ⊆ ( 𝑝 𝐻 𝑞 ) ↔ ( ∅ 𝐽 𝑞 ) ⊆ ( ∅ 𝐻 𝑞 ) ) ) |
| 44 |
43
|
ralbidv |
⊢ ( 𝑝 = ∅ → ( ∀ 𝑞 ∈ { ∅ } ( 𝑝 𝐽 𝑞 ) ⊆ ( 𝑝 𝐻 𝑞 ) ↔ ∀ 𝑞 ∈ { ∅ } ( ∅ 𝐽 𝑞 ) ⊆ ( ∅ 𝐻 𝑞 ) ) ) |
| 45 |
32 44
|
ralsn |
⊢ ( ∀ 𝑝 ∈ { ∅ } ∀ 𝑞 ∈ { ∅ } ( 𝑝 𝐽 𝑞 ) ⊆ ( 𝑝 𝐻 𝑞 ) ↔ ∀ 𝑞 ∈ { ∅ } ( ∅ 𝐽 𝑞 ) ⊆ ( ∅ 𝐻 𝑞 ) ) |
| 46 |
|
oveq2 |
⊢ ( 𝑞 = ∅ → ( ∅ 𝐽 𝑞 ) = ( ∅ 𝐽 ∅ ) ) |
| 47 |
|
oveq2 |
⊢ ( 𝑞 = ∅ → ( ∅ 𝐻 𝑞 ) = ( ∅ 𝐻 ∅ ) ) |
| 48 |
46 47
|
sseq12d |
⊢ ( 𝑞 = ∅ → ( ( ∅ 𝐽 𝑞 ) ⊆ ( ∅ 𝐻 𝑞 ) ↔ ( ∅ 𝐽 ∅ ) ⊆ ( ∅ 𝐻 ∅ ) ) ) |
| 49 |
32 48
|
ralsn |
⊢ ( ∀ 𝑞 ∈ { ∅ } ( ∅ 𝐽 𝑞 ) ⊆ ( ∅ 𝐻 𝑞 ) ↔ ( ∅ 𝐽 ∅ ) ⊆ ( ∅ 𝐻 ∅ ) ) |
| 50 |
45 49
|
bitri |
⊢ ( ∀ 𝑝 ∈ { ∅ } ∀ 𝑞 ∈ { ∅ } ( 𝑝 𝐽 𝑞 ) ⊆ ( 𝑝 𝐻 𝑞 ) ↔ ( ∅ 𝐽 ∅ ) ⊆ ( ∅ 𝐻 ∅ ) ) |
| 51 |
40 50
|
mpbir |
⊢ ∀ 𝑝 ∈ { ∅ } ∀ 𝑞 ∈ { ∅ } ( 𝑝 𝐽 𝑞 ) ⊆ ( 𝑝 𝐻 𝑞 ) |
| 52 |
26 15
|
eqtr3i |
⊢ { ∅ } = ( Base ‘ 𝐸 ) |
| 53 |
4 52
|
homffn |
⊢ 𝐽 Fn ( { ∅ } × { ∅ } ) |
| 54 |
53
|
a1i |
⊢ ( ⊤ → 𝐽 Fn ( { ∅ } × { ∅ } ) ) |
| 55 |
6 29
|
homffn |
⊢ 𝐻 Fn ( { ∅ } × { ∅ } ) |
| 56 |
55
|
a1i |
⊢ ( ⊤ → 𝐻 Fn ( { ∅ } × { ∅ } ) ) |
| 57 |
28
|
a1i |
⊢ ( ⊤ → { ∅ } ∈ V ) |
| 58 |
54 56 57
|
isssc |
⊢ ( ⊤ → ( 𝐽 ⊆cat 𝐻 ↔ ( { ∅ } ⊆ { ∅ } ∧ ∀ 𝑝 ∈ { ∅ } ∀ 𝑞 ∈ { ∅ } ( 𝑝 𝐽 𝑞 ) ⊆ ( 𝑝 𝐻 𝑞 ) ) ) ) |
| 59 |
58
|
mptru |
⊢ ( 𝐽 ⊆cat 𝐻 ↔ ( { ∅ } ⊆ { ∅ } ∧ ∀ 𝑝 ∈ { ∅ } ∀ 𝑞 ∈ { ∅ } ( 𝑝 𝐽 𝑞 ) ⊆ ( 𝑝 𝐻 𝑞 ) ) ) |
| 60 |
18 51 59
|
mpbir2an |
⊢ 𝐽 ⊆cat 𝐻 |
| 61 |
|
elirr |
⊢ ¬ { ∅ } ∈ { ∅ } |
| 62 |
5 26
|
eqtri |
⊢ 𝑆 = { ∅ } |
| 63 |
|
biid |
⊢ ( ¬ ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ↔ ¬ ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ) |
| 64 |
62 63
|
rexeqbii |
⊢ ( ∃ 𝑥 ∈ 𝑆 ¬ ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ↔ ∃ 𝑥 ∈ { ∅ } ¬ ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ) |
| 65 |
|
rexnal |
⊢ ( ∃ 𝑥 ∈ 𝑆 ¬ ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ↔ ¬ ∀ 𝑥 ∈ 𝑆 ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ) |
| 66 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( 1 ‘ 𝑥 ) = ( 1 ‘ ∅ ) ) |
| 67 |
26
|
a1i |
⊢ ( 𝑦 = ∅ → 1o = { ∅ } ) |
| 68 |
13
|
simpri |
⊢ ( Id ‘ 𝐶 ) = ( 𝑦 ∈ { ∅ } ↦ 1o ) |
| 69 |
7 68
|
eqtri |
⊢ 1 = ( 𝑦 ∈ { ∅ } ↦ 1o ) |
| 70 |
67 69 28
|
fvmpt |
⊢ ( ∅ ∈ { ∅ } → ( 1 ‘ ∅ ) = { ∅ } ) |
| 71 |
33 70
|
ax-mp |
⊢ ( 1 ‘ ∅ ) = { ∅ } |
| 72 |
66 71
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( 1 ‘ 𝑥 ) = { ∅ } ) |
| 73 |
|
oveq12 |
⊢ ( ( 𝑥 = ∅ ∧ 𝑥 = ∅ ) → ( 𝑥 𝐽 𝑥 ) = ( ∅ 𝐽 ∅ ) ) |
| 74 |
73
|
anidms |
⊢ ( 𝑥 = ∅ → ( 𝑥 𝐽 𝑥 ) = ( ∅ 𝐽 ∅ ) ) |
| 75 |
74 27
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( 𝑥 𝐽 𝑥 ) = { ∅ } ) |
| 76 |
72 75
|
eleq12d |
⊢ ( 𝑥 = ∅ → ( ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ↔ { ∅ } ∈ { ∅ } ) ) |
| 77 |
76
|
notbid |
⊢ ( 𝑥 = ∅ → ( ¬ ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ↔ ¬ { ∅ } ∈ { ∅ } ) ) |
| 78 |
32 77
|
rexsn |
⊢ ( ∃ 𝑥 ∈ { ∅ } ¬ ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ↔ ¬ { ∅ } ∈ { ∅ } ) |
| 79 |
64 65 78
|
3bitr3ri |
⊢ ( ¬ { ∅ } ∈ { ∅ } ↔ ¬ ∀ 𝑥 ∈ 𝑆 ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ) |
| 80 |
61 79
|
mpbi |
⊢ ¬ ∀ 𝑥 ∈ 𝑆 ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) |
| 81 |
|
setc1oterm |
⊢ ( SetCat ‘ 1o ) ∈ TermCat |
| 82 |
81
|
a1i |
⊢ ( ⊤ → ( SetCat ‘ 1o ) ∈ TermCat ) |
| 83 |
82
|
termccd |
⊢ ( ⊤ → ( SetCat ‘ 1o ) ∈ Cat ) |
| 84 |
83
|
mptru |
⊢ ( SetCat ‘ 1o ) ∈ Cat |
| 85 |
3 84
|
eqeltri |
⊢ 𝐸 ∈ Cat |
| 86 |
|
snex |
⊢ { 〈 〈 ∅ , ∅ 〉 , ∅ , · 〉 } ∈ V |
| 87 |
1 86
|
catcofval |
⊢ { 〈 〈 ∅ , ∅ 〉 , ∅ , · 〉 } = ( comp ‘ 𝐶 ) |
| 88 |
3
|
setc1ocofval |
⊢ { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } = ( comp ‘ 𝐸 ) |
| 89 |
|
velsn |
⊢ ( 𝑎 ∈ { ∅ } ↔ 𝑎 = ∅ ) |
| 90 |
|
velsn |
⊢ ( 𝑏 ∈ { ∅ } ↔ 𝑏 = ∅ ) |
| 91 |
|
velsn |
⊢ ( 𝑐 ∈ { ∅ } ↔ 𝑐 = ∅ ) |
| 92 |
89 90 91
|
3anbi123i |
⊢ ( ( 𝑎 ∈ { ∅ } ∧ 𝑏 ∈ { ∅ } ∧ 𝑐 ∈ { ∅ } ) ↔ ( 𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅ ) ) |
| 93 |
92
|
anbi1i |
⊢ ( ( ( 𝑎 ∈ { ∅ } ∧ 𝑏 ∈ { ∅ } ∧ 𝑐 ∈ { ∅ } ) ∧ ( 𝑚 ∈ ( 𝑎 𝐽 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐽 𝑐 ) ) ) ↔ ( ( 𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅ ) ∧ ( 𝑚 ∈ ( 𝑎 𝐽 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐽 𝑐 ) ) ) ) |
| 94 |
|
simp1 |
⊢ ( ( 𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅ ) → 𝑎 = ∅ ) |
| 95 |
|
simp2 |
⊢ ( ( 𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅ ) → 𝑏 = ∅ ) |
| 96 |
94 95
|
oveq12d |
⊢ ( ( 𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅ ) → ( 𝑎 𝐽 𝑏 ) = ( ∅ 𝐽 ∅ ) ) |
| 97 |
96 27
|
eqtrdi |
⊢ ( ( 𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅ ) → ( 𝑎 𝐽 𝑏 ) = { ∅ } ) |
| 98 |
97
|
eleq2d |
⊢ ( ( 𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅ ) → ( 𝑚 ∈ ( 𝑎 𝐽 𝑏 ) ↔ 𝑚 ∈ { ∅ } ) ) |
| 99 |
|
velsn |
⊢ ( 𝑚 ∈ { ∅ } ↔ 𝑚 = ∅ ) |
| 100 |
98 99
|
bitrdi |
⊢ ( ( 𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅ ) → ( 𝑚 ∈ ( 𝑎 𝐽 𝑏 ) ↔ 𝑚 = ∅ ) ) |
| 101 |
|
simp3 |
⊢ ( ( 𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅ ) → 𝑐 = ∅ ) |
| 102 |
95 101
|
oveq12d |
⊢ ( ( 𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅ ) → ( 𝑏 𝐽 𝑐 ) = ( ∅ 𝐽 ∅ ) ) |
| 103 |
102 27
|
eqtrdi |
⊢ ( ( 𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅ ) → ( 𝑏 𝐽 𝑐 ) = { ∅ } ) |
| 104 |
103
|
eleq2d |
⊢ ( ( 𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅ ) → ( 𝑛 ∈ ( 𝑏 𝐽 𝑐 ) ↔ 𝑛 ∈ { ∅ } ) ) |
| 105 |
|
velsn |
⊢ ( 𝑛 ∈ { ∅ } ↔ 𝑛 = ∅ ) |
| 106 |
104 105
|
bitrdi |
⊢ ( ( 𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅ ) → ( 𝑛 ∈ ( 𝑏 𝐽 𝑐 ) ↔ 𝑛 = ∅ ) ) |
| 107 |
100 106
|
anbi12d |
⊢ ( ( 𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅ ) → ( ( 𝑚 ∈ ( 𝑎 𝐽 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐽 𝑐 ) ) ↔ ( 𝑚 = ∅ ∧ 𝑛 = ∅ ) ) ) |
| 108 |
107
|
pm5.32i |
⊢ ( ( ( 𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅ ) ∧ ( 𝑚 ∈ ( 𝑎 𝐽 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐽 𝑐 ) ) ) ↔ ( ( 𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅ ) ∧ ( 𝑚 = ∅ ∧ 𝑛 = ∅ ) ) ) |
| 109 |
93 108
|
bitri |
⊢ ( ( ( 𝑎 ∈ { ∅ } ∧ 𝑏 ∈ { ∅ } ∧ 𝑐 ∈ { ∅ } ) ∧ ( 𝑚 ∈ ( 𝑎 𝐽 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐽 𝑐 ) ) ) ↔ ( ( 𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅ ) ∧ ( 𝑚 = ∅ ∧ 𝑛 = ∅ ) ) ) |
| 110 |
32
|
prid1 |
⊢ ∅ ∈ { ∅ , 1o } |
| 111 |
110 11
|
eleqtrri |
⊢ ∅ ∈ 2o |
| 112 |
|
ineq12 |
⊢ ( ( 𝑓 = ∅ ∧ 𝑔 = ∅ ) → ( 𝑓 ∩ 𝑔 ) = ( ∅ ∩ ∅ ) ) |
| 113 |
|
0in |
⊢ ( ∅ ∩ ∅ ) = ∅ |
| 114 |
112 113
|
eqtrdi |
⊢ ( ( 𝑓 = ∅ ∧ 𝑔 = ∅ ) → ( 𝑓 ∩ 𝑔 ) = ∅ ) |
| 115 |
114 2 32
|
ovmpoa |
⊢ ( ( ∅ ∈ 2o ∧ ∅ ∈ 2o ) → ( ∅ · ∅ ) = ∅ ) |
| 116 |
111 111 115
|
mp2an |
⊢ ( ∅ · ∅ ) = ∅ |
| 117 |
32
|
ovsn2 |
⊢ ( ∅ { 〈 ∅ , ∅ , ∅ 〉 } ∅ ) = ∅ |
| 118 |
116 117
|
eqtr4i |
⊢ ( ∅ · ∅ ) = ( ∅ { 〈 ∅ , ∅ , ∅ 〉 } ∅ ) |
| 119 |
|
simpl1 |
⊢ ( ( ( 𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅ ) ∧ ( 𝑚 = ∅ ∧ 𝑛 = ∅ ) ) → 𝑎 = ∅ ) |
| 120 |
|
simpl2 |
⊢ ( ( ( 𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅ ) ∧ ( 𝑚 = ∅ ∧ 𝑛 = ∅ ) ) → 𝑏 = ∅ ) |
| 121 |
119 120
|
opeq12d |
⊢ ( ( ( 𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅ ) ∧ ( 𝑚 = ∅ ∧ 𝑛 = ∅ ) ) → 〈 𝑎 , 𝑏 〉 = 〈 ∅ , ∅ 〉 ) |
| 122 |
|
simpl3 |
⊢ ( ( ( 𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅ ) ∧ ( 𝑚 = ∅ ∧ 𝑛 = ∅ ) ) → 𝑐 = ∅ ) |
| 123 |
121 122
|
oveq12d |
⊢ ( ( ( 𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅ ) ∧ ( 𝑚 = ∅ ∧ 𝑛 = ∅ ) ) → ( 〈 𝑎 , 𝑏 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , · 〉 } 𝑐 ) = ( 〈 ∅ , ∅ 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , · 〉 } ∅ ) ) |
| 124 |
37 37
|
mpoex |
⊢ ( 𝑓 ∈ 2o , 𝑔 ∈ 2o ↦ ( 𝑓 ∩ 𝑔 ) ) ∈ V |
| 125 |
2 124
|
eqeltri |
⊢ · ∈ V |
| 126 |
125
|
ovsn2 |
⊢ ( 〈 ∅ , ∅ 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , · 〉 } ∅ ) = · |
| 127 |
123 126
|
eqtrdi |
⊢ ( ( ( 𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅ ) ∧ ( 𝑚 = ∅ ∧ 𝑛 = ∅ ) ) → ( 〈 𝑎 , 𝑏 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , · 〉 } 𝑐 ) = · ) |
| 128 |
|
simprr |
⊢ ( ( ( 𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅ ) ∧ ( 𝑚 = ∅ ∧ 𝑛 = ∅ ) ) → 𝑛 = ∅ ) |
| 129 |
|
simprl |
⊢ ( ( ( 𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅ ) ∧ ( 𝑚 = ∅ ∧ 𝑛 = ∅ ) ) → 𝑚 = ∅ ) |
| 130 |
127 128 129
|
oveq123d |
⊢ ( ( ( 𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅ ) ∧ ( 𝑚 = ∅ ∧ 𝑛 = ∅ ) ) → ( 𝑛 ( 〈 𝑎 , 𝑏 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , · 〉 } 𝑐 ) 𝑚 ) = ( ∅ · ∅ ) ) |
| 131 |
121 122
|
oveq12d |
⊢ ( ( ( 𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅ ) ∧ ( 𝑚 = ∅ ∧ 𝑛 = ∅ ) ) → ( 〈 𝑎 , 𝑏 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } 𝑐 ) = ( 〈 ∅ , ∅ 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ∅ ) ) |
| 132 |
|
snex |
⊢ { 〈 ∅ , ∅ , ∅ 〉 } ∈ V |
| 133 |
132
|
ovsn2 |
⊢ ( 〈 ∅ , ∅ 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ∅ ) = { 〈 ∅ , ∅ , ∅ 〉 } |
| 134 |
131 133
|
eqtrdi |
⊢ ( ( ( 𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅ ) ∧ ( 𝑚 = ∅ ∧ 𝑛 = ∅ ) ) → ( 〈 𝑎 , 𝑏 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } 𝑐 ) = { 〈 ∅ , ∅ , ∅ 〉 } ) |
| 135 |
134 128 129
|
oveq123d |
⊢ ( ( ( 𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅ ) ∧ ( 𝑚 = ∅ ∧ 𝑛 = ∅ ) ) → ( 𝑛 ( 〈 𝑎 , 𝑏 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } 𝑐 ) 𝑚 ) = ( ∅ { 〈 ∅ , ∅ , ∅ 〉 } ∅ ) ) |
| 136 |
118 130 135
|
3eqtr4a |
⊢ ( ( ( 𝑎 = ∅ ∧ 𝑏 = ∅ ∧ 𝑐 = ∅ ) ∧ ( 𝑚 = ∅ ∧ 𝑛 = ∅ ) ) → ( 𝑛 ( 〈 𝑎 , 𝑏 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , · 〉 } 𝑐 ) 𝑚 ) = ( 𝑛 ( 〈 𝑎 , 𝑏 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } 𝑐 ) 𝑚 ) ) |
| 137 |
109 136
|
sylbi |
⊢ ( ( ( 𝑎 ∈ { ∅ } ∧ 𝑏 ∈ { ∅ } ∧ 𝑐 ∈ { ∅ } ) ∧ ( 𝑚 ∈ ( 𝑎 𝐽 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐽 𝑐 ) ) ) → ( 𝑛 ( 〈 𝑎 , 𝑏 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , · 〉 } 𝑐 ) 𝑚 ) = ( 𝑛 ( 〈 𝑎 , 𝑏 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } 𝑐 ) 𝑚 ) ) |
| 138 |
137
|
adantll |
⊢ ( ( ( ⊤ ∧ ( 𝑎 ∈ { ∅ } ∧ 𝑏 ∈ { ∅ } ∧ 𝑐 ∈ { ∅ } ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐽 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐽 𝑐 ) ) ) → ( 𝑛 ( 〈 𝑎 , 𝑏 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , · 〉 } 𝑐 ) 𝑚 ) = ( 𝑛 ( 〈 𝑎 , 𝑏 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } 𝑐 ) 𝑚 ) ) |
| 139 |
85
|
a1i |
⊢ ( ⊤ → 𝐸 ∈ Cat ) |
| 140 |
18
|
a1i |
⊢ ( ⊤ → { ∅ } ⊆ { ∅ } ) |
| 141 |
8 29 52 4 87 88 138 139 140
|
resccat |
⊢ ( ⊤ → ( 𝐷 ∈ Cat ↔ 𝐸 ∈ Cat ) ) |
| 142 |
141
|
mptru |
⊢ ( 𝐷 ∈ Cat ↔ 𝐸 ∈ Cat ) |
| 143 |
85 142
|
mpbir |
⊢ 𝐷 ∈ Cat |
| 144 |
60 80 143
|
3pm3.2i |
⊢ ( 𝐽 ⊆cat 𝐻 ∧ ¬ ∀ 𝑥 ∈ 𝑆 ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ 𝐷 ∈ Cat ) |
| 145 |
14 17 144
|
3pm3.2i |
⊢ ( 𝐶 ∈ Cat ∧ 𝐽 Fn ( 𝑆 × 𝑆 ) ∧ ( 𝐽 ⊆cat 𝐻 ∧ ¬ ∀ 𝑥 ∈ 𝑆 ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ 𝐷 ∈ Cat ) ) |