| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnelsubclem.1 |
⊢ 𝐽 ∈ V |
| 2 |
|
cnelsubclem.2 |
⊢ 𝑆 ∈ V |
| 3 |
|
cnelsubclem.3 |
⊢ ( 𝐶 ∈ Cat ∧ 𝐽 Fn ( 𝑆 × 𝑆 ) ∧ ( 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ∧ ¬ ∀ 𝑥 ∈ 𝑆 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ( 𝐶 ↾cat 𝐽 ) ∈ Cat ) ) |
| 4 |
3
|
simp1i |
⊢ 𝐶 ∈ Cat |
| 5 |
3
|
simp2i |
⊢ 𝐽 Fn ( 𝑆 × 𝑆 ) |
| 6 |
3
|
simp3i |
⊢ ( 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ∧ ¬ ∀ 𝑥 ∈ 𝑆 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ( 𝐶 ↾cat 𝐽 ) ∈ Cat ) |
| 7 |
|
id |
⊢ ( 𝑠 = 𝑆 → 𝑠 = 𝑆 ) |
| 8 |
7
|
sqxpeqd |
⊢ ( 𝑠 = 𝑆 → ( 𝑠 × 𝑠 ) = ( 𝑆 × 𝑆 ) ) |
| 9 |
8
|
fneq2d |
⊢ ( 𝑠 = 𝑆 → ( 𝐽 Fn ( 𝑠 × 𝑠 ) ↔ 𝐽 Fn ( 𝑆 × 𝑆 ) ) ) |
| 10 |
|
raleq |
⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ↔ ∀ 𝑥 ∈ 𝑆 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ) ) |
| 11 |
10
|
notbid |
⊢ ( 𝑠 = 𝑆 → ( ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ↔ ¬ ∀ 𝑥 ∈ 𝑆 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ) ) |
| 12 |
11
|
3anbi2d |
⊢ ( 𝑠 = 𝑆 → ( ( 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ∧ ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ( 𝐶 ↾cat 𝐽 ) ∈ Cat ) ↔ ( 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ∧ ¬ ∀ 𝑥 ∈ 𝑆 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ( 𝐶 ↾cat 𝐽 ) ∈ Cat ) ) ) |
| 13 |
9 12
|
anbi12d |
⊢ ( 𝑠 = 𝑆 → ( ( 𝐽 Fn ( 𝑠 × 𝑠 ) ∧ ( 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ∧ ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ( 𝐶 ↾cat 𝐽 ) ∈ Cat ) ) ↔ ( 𝐽 Fn ( 𝑆 × 𝑆 ) ∧ ( 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ∧ ¬ ∀ 𝑥 ∈ 𝑆 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ( 𝐶 ↾cat 𝐽 ) ∈ Cat ) ) ) ) |
| 14 |
2 13
|
spcev |
⊢ ( ( 𝐽 Fn ( 𝑆 × 𝑆 ) ∧ ( 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ∧ ¬ ∀ 𝑥 ∈ 𝑆 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ( 𝐶 ↾cat 𝐽 ) ∈ Cat ) ) → ∃ 𝑠 ( 𝐽 Fn ( 𝑠 × 𝑠 ) ∧ ( 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ∧ ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ( 𝐶 ↾cat 𝐽 ) ∈ Cat ) ) ) |
| 15 |
|
fneq1 |
⊢ ( 𝑗 = 𝐽 → ( 𝑗 Fn ( 𝑠 × 𝑠 ) ↔ 𝐽 Fn ( 𝑠 × 𝑠 ) ) ) |
| 16 |
|
breq1 |
⊢ ( 𝑗 = 𝐽 → ( 𝑗 ⊆cat ( Homf ‘ 𝐶 ) ↔ 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ) ) |
| 17 |
|
oveq |
⊢ ( 𝑗 = 𝐽 → ( 𝑥 𝑗 𝑥 ) = ( 𝑥 𝐽 𝑥 ) ) |
| 18 |
17
|
eleq2d |
⊢ ( 𝑗 = 𝐽 → ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ↔ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ) ) |
| 19 |
18
|
ralbidv |
⊢ ( 𝑗 = 𝐽 → ( ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ↔ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ) ) |
| 20 |
19
|
notbid |
⊢ ( 𝑗 = 𝐽 → ( ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ↔ ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ) ) |
| 21 |
|
oveq2 |
⊢ ( 𝑗 = 𝐽 → ( 𝐶 ↾cat 𝑗 ) = ( 𝐶 ↾cat 𝐽 ) ) |
| 22 |
21
|
eleq1d |
⊢ ( 𝑗 = 𝐽 → ( ( 𝐶 ↾cat 𝑗 ) ∈ Cat ↔ ( 𝐶 ↾cat 𝐽 ) ∈ Cat ) ) |
| 23 |
16 20 22
|
3anbi123d |
⊢ ( 𝑗 = 𝐽 → ( ( 𝑗 ⊆cat ( Homf ‘ 𝐶 ) ∧ ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ( 𝐶 ↾cat 𝑗 ) ∈ Cat ) ↔ ( 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ∧ ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ( 𝐶 ↾cat 𝐽 ) ∈ Cat ) ) ) |
| 24 |
15 23
|
anbi12d |
⊢ ( 𝑗 = 𝐽 → ( ( 𝑗 Fn ( 𝑠 × 𝑠 ) ∧ ( 𝑗 ⊆cat ( Homf ‘ 𝐶 ) ∧ ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ( 𝐶 ↾cat 𝑗 ) ∈ Cat ) ) ↔ ( 𝐽 Fn ( 𝑠 × 𝑠 ) ∧ ( 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ∧ ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ( 𝐶 ↾cat 𝐽 ) ∈ Cat ) ) ) ) |
| 25 |
24
|
exbidv |
⊢ ( 𝑗 = 𝐽 → ( ∃ 𝑠 ( 𝑗 Fn ( 𝑠 × 𝑠 ) ∧ ( 𝑗 ⊆cat ( Homf ‘ 𝐶 ) ∧ ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ( 𝐶 ↾cat 𝑗 ) ∈ Cat ) ) ↔ ∃ 𝑠 ( 𝐽 Fn ( 𝑠 × 𝑠 ) ∧ ( 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ∧ ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ( 𝐶 ↾cat 𝐽 ) ∈ Cat ) ) ) ) |
| 26 |
1 25
|
spcev |
⊢ ( ∃ 𝑠 ( 𝐽 Fn ( 𝑠 × 𝑠 ) ∧ ( 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ∧ ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ( 𝐶 ↾cat 𝐽 ) ∈ Cat ) ) → ∃ 𝑗 ∃ 𝑠 ( 𝑗 Fn ( 𝑠 × 𝑠 ) ∧ ( 𝑗 ⊆cat ( Homf ‘ 𝐶 ) ∧ ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ( 𝐶 ↾cat 𝑗 ) ∈ Cat ) ) ) |
| 27 |
14 26
|
syl |
⊢ ( ( 𝐽 Fn ( 𝑆 × 𝑆 ) ∧ ( 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ∧ ¬ ∀ 𝑥 ∈ 𝑆 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ( 𝐶 ↾cat 𝐽 ) ∈ Cat ) ) → ∃ 𝑗 ∃ 𝑠 ( 𝑗 Fn ( 𝑠 × 𝑠 ) ∧ ( 𝑗 ⊆cat ( Homf ‘ 𝐶 ) ∧ ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ( 𝐶 ↾cat 𝑗 ) ∈ Cat ) ) ) |
| 28 |
5 6 27
|
mp2an |
⊢ ∃ 𝑗 ∃ 𝑠 ( 𝑗 Fn ( 𝑠 × 𝑠 ) ∧ ( 𝑗 ⊆cat ( Homf ‘ 𝐶 ) ∧ ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ( 𝐶 ↾cat 𝑗 ) ∈ Cat ) ) |
| 29 |
|
fveq2 |
⊢ ( 𝑐 = 𝐶 → ( Homf ‘ 𝑐 ) = ( Homf ‘ 𝐶 ) ) |
| 30 |
29
|
breq2d |
⊢ ( 𝑐 = 𝐶 → ( 𝑗 ⊆cat ( Homf ‘ 𝑐 ) ↔ 𝑗 ⊆cat ( Homf ‘ 𝐶 ) ) ) |
| 31 |
|
fveq2 |
⊢ ( 𝑐 = 𝐶 → ( Id ‘ 𝑐 ) = ( Id ‘ 𝐶 ) ) |
| 32 |
31
|
fveq1d |
⊢ ( 𝑐 = 𝐶 → ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) |
| 33 |
32
|
eleq1d |
⊢ ( 𝑐 = 𝐶 → ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ↔ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ) ) |
| 34 |
33
|
ralbidv |
⊢ ( 𝑐 = 𝐶 → ( ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ↔ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ) ) |
| 35 |
34
|
notbid |
⊢ ( 𝑐 = 𝐶 → ( ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ↔ ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ) ) |
| 36 |
|
oveq1 |
⊢ ( 𝑐 = 𝐶 → ( 𝑐 ↾cat 𝑗 ) = ( 𝐶 ↾cat 𝑗 ) ) |
| 37 |
36
|
eleq1d |
⊢ ( 𝑐 = 𝐶 → ( ( 𝑐 ↾cat 𝑗 ) ∈ Cat ↔ ( 𝐶 ↾cat 𝑗 ) ∈ Cat ) ) |
| 38 |
30 35 37
|
3anbi123d |
⊢ ( 𝑐 = 𝐶 → ( ( 𝑗 ⊆cat ( Homf ‘ 𝑐 ) ∧ ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ( 𝑐 ↾cat 𝑗 ) ∈ Cat ) ↔ ( 𝑗 ⊆cat ( Homf ‘ 𝐶 ) ∧ ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ( 𝐶 ↾cat 𝑗 ) ∈ Cat ) ) ) |
| 39 |
38
|
anbi2d |
⊢ ( 𝑐 = 𝐶 → ( ( 𝑗 Fn ( 𝑠 × 𝑠 ) ∧ ( 𝑗 ⊆cat ( Homf ‘ 𝑐 ) ∧ ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ( 𝑐 ↾cat 𝑗 ) ∈ Cat ) ) ↔ ( 𝑗 Fn ( 𝑠 × 𝑠 ) ∧ ( 𝑗 ⊆cat ( Homf ‘ 𝐶 ) ∧ ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ( 𝐶 ↾cat 𝑗 ) ∈ Cat ) ) ) ) |
| 40 |
39
|
2exbidv |
⊢ ( 𝑐 = 𝐶 → ( ∃ 𝑗 ∃ 𝑠 ( 𝑗 Fn ( 𝑠 × 𝑠 ) ∧ ( 𝑗 ⊆cat ( Homf ‘ 𝑐 ) ∧ ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ( 𝑐 ↾cat 𝑗 ) ∈ Cat ) ) ↔ ∃ 𝑗 ∃ 𝑠 ( 𝑗 Fn ( 𝑠 × 𝑠 ) ∧ ( 𝑗 ⊆cat ( Homf ‘ 𝐶 ) ∧ ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ( 𝐶 ↾cat 𝑗 ) ∈ Cat ) ) ) ) |
| 41 |
40
|
rspcev |
⊢ ( ( 𝐶 ∈ Cat ∧ ∃ 𝑗 ∃ 𝑠 ( 𝑗 Fn ( 𝑠 × 𝑠 ) ∧ ( 𝑗 ⊆cat ( Homf ‘ 𝐶 ) ∧ ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ( 𝐶 ↾cat 𝑗 ) ∈ Cat ) ) ) → ∃ 𝑐 ∈ Cat ∃ 𝑗 ∃ 𝑠 ( 𝑗 Fn ( 𝑠 × 𝑠 ) ∧ ( 𝑗 ⊆cat ( Homf ‘ 𝑐 ) ∧ ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ( 𝑐 ↾cat 𝑗 ) ∈ Cat ) ) ) |
| 42 |
4 28 41
|
mp2an |
⊢ ∃ 𝑐 ∈ Cat ∃ 𝑗 ∃ 𝑠 ( 𝑗 Fn ( 𝑠 × 𝑠 ) ∧ ( 𝑗 ⊆cat ( Homf ‘ 𝑐 ) ∧ ¬ ∀ 𝑥 ∈ 𝑠 ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ( 𝑐 ↾cat 𝑗 ) ∈ Cat ) ) |