Metamath Proof Explorer


Theorem setc1onsubc

Description: Construct a category with one object and two morphisms and prove that category ( SetCat1o ) satisfies all conditions for a subcategory but the compatibility of identity morphisms, showing the necessity of the latter condition in defining a subcategory. Exercise 4A of Adamek p. 58. (Contributed by Zhi Wang, 6-Nov-2025)

Ref Expression
Hypotheses setc1onsubc.c C = Base ndx Hom ndx 2 𝑜 comp ndx · ˙
setc1onsubc.x · ˙ = f 2 𝑜 , g 2 𝑜 f g
setc1onsubc.e E = SetCat 1 𝑜
setc1onsubc.j J = Hom 𝑓 E
setc1onsubc.s S = 1 𝑜
setc1onsubc.h H = Hom 𝑓 C
setc1onsubc.i 1 ˙ = Id C
setc1onsubc.d D = C cat J
Assertion setc1onsubc C Cat J Fn S × S J cat H ¬ x S 1 ˙ x x J x D Cat

Proof

Step Hyp Ref Expression
1 setc1onsubc.c C = Base ndx Hom ndx 2 𝑜 comp ndx · ˙
2 setc1onsubc.x · ˙ = f 2 𝑜 , g 2 𝑜 f g
3 setc1onsubc.e E = SetCat 1 𝑜
4 setc1onsubc.j J = Hom 𝑓 E
5 setc1onsubc.s S = 1 𝑜
6 setc1onsubc.h H = Hom 𝑓 C
7 setc1onsubc.i 1 ˙ = Id C
8 setc1onsubc.d D = C cat J
9 0ss 1 𝑜
10 1oex 1 𝑜 V
11 df2o3 2 𝑜 = 1 𝑜
12 1 11 2 incat 1 𝑜 1 𝑜 V C Cat Id C = y 1 𝑜
13 9 10 12 mp2an C Cat Id C = y 1 𝑜
14 13 simpli C Cat
15 3 setc1obas 1 𝑜 = Base E
16 5 15 eqtri S = Base E
17 4 16 homffn J Fn S × S
18 ssid
19 snsspr1 1 𝑜
20 3 setc1ohomfval 1 𝑜 = Hom E
21 0lt1o 1 𝑜
22 21 a1i 1 𝑜
23 4 15 20 22 22 homfval J = 1 𝑜
24 23 mptru J = 1 𝑜
25 10 ovsn2 1 𝑜 = 1 𝑜
26 df1o2 1 𝑜 =
27 24 25 26 3eqtri J =
28 snex V
29 1 28 catbas = Base C
30 snex 2 𝑜 V
31 1 30 cathomfval 2 𝑜 = Hom C
32 0ex V
33 32 snid
34 33 a1i
35 6 29 31 34 34 homfval H = 2 𝑜
36 35 mptru H = 2 𝑜
37 2oex 2 𝑜 V
38 37 ovsn2 2 𝑜 = 2 𝑜
39 36 38 11 3eqtri H = 1 𝑜
40 19 27 39 3sstr4i J H
41 oveq1 p = p J q = J q
42 oveq1 p = p H q = H q
43 41 42 sseq12d p = p J q p H q J q H q
44 43 ralbidv p = q p J q p H q q J q H q
45 32 44 ralsn p q p J q p H q q J q H q
46 oveq2 q = J q = J
47 oveq2 q = H q = H
48 46 47 sseq12d q = J q H q J H
49 32 48 ralsn q J q H q J H
50 45 49 bitri p q p J q p H q J H
51 40 50 mpbir p q p J q p H q
52 26 15 eqtr3i = Base E
53 4 52 homffn J Fn ×
54 53 a1i J Fn ×
55 6 29 homffn H Fn ×
56 55 a1i H Fn ×
57 28 a1i V
58 54 56 57 isssc J cat H p q p J q p H q
59 58 mptru J cat H p q p J q p H q
60 18 51 59 mpbir2an J cat H
61 elirr ¬
62 5 26 eqtri S =
63 biid ¬ 1 ˙ x x J x ¬ 1 ˙ x x J x
64 62 63 rexeqbii x S ¬ 1 ˙ x x J x x ¬ 1 ˙ x x J x
65 rexnal x S ¬ 1 ˙ x x J x ¬ x S 1 ˙ x x J x
66 fveq2 x = 1 ˙ x = 1 ˙
67 26 a1i y = 1 𝑜 =
68 13 simpri Id C = y 1 𝑜
69 7 68 eqtri 1 ˙ = y 1 𝑜
70 67 69 28 fvmpt 1 ˙ =
71 33 70 ax-mp 1 ˙ =
72 66 71 eqtrdi x = 1 ˙ x =
73 oveq12 x = x = x J x = J
74 73 anidms x = x J x = J
75 74 27 eqtrdi x = x J x =
76 72 75 eleq12d x = 1 ˙ x x J x
77 76 notbid x = ¬ 1 ˙ x x J x ¬
78 32 77 rexsn x ¬ 1 ˙ x x J x ¬
79 64 65 78 3bitr3ri ¬ ¬ x S 1 ˙ x x J x
80 61 79 mpbi ¬ x S 1 ˙ x x J x
81 setc1oterm Could not format ( SetCat ` 1o ) e. TermCat : No typesetting found for |- ( SetCat ` 1o ) e. TermCat with typecode |-
82 81 a1i Could not format ( T. -> ( SetCat ` 1o ) e. TermCat ) : No typesetting found for |- ( T. -> ( SetCat ` 1o ) e. TermCat ) with typecode |-
83 82 termccd SetCat 1 𝑜 Cat
84 83 mptru SetCat 1 𝑜 Cat
85 3 84 eqeltri E Cat
86 snex · ˙ V
87 1 86 catcofval · ˙ = comp C
88 3 setc1ocofval = comp E
89 velsn a a =
90 velsn b b =
91 velsn c c =
92 89 90 91 3anbi123i a b c a = b = c =
93 92 anbi1i a b c m a J b n b J c a = b = c = m a J b n b J c
94 simp1 a = b = c = a =
95 simp2 a = b = c = b =
96 94 95 oveq12d a = b = c = a J b = J
97 96 27 eqtrdi a = b = c = a J b =
98 97 eleq2d a = b = c = m a J b m
99 velsn m m =
100 98 99 bitrdi a = b = c = m a J b m =
101 simp3 a = b = c = c =
102 95 101 oveq12d a = b = c = b J c = J
103 102 27 eqtrdi a = b = c = b J c =
104 103 eleq2d a = b = c = n b J c n
105 velsn n n =
106 104 105 bitrdi a = b = c = n b J c n =
107 100 106 anbi12d a = b = c = m a J b n b J c m = n =
108 107 pm5.32i a = b = c = m a J b n b J c a = b = c = m = n =
109 93 108 bitri a b c m a J b n b J c a = b = c = m = n =
110 32 prid1 1 𝑜
111 110 11 eleqtrri 2 𝑜
112 ineq12 f = g = f g =
113 0in =
114 112 113 eqtrdi f = g = f g =
115 114 2 32 ovmpoa 2 𝑜 2 𝑜 · ˙ =
116 111 111 115 mp2an · ˙ =
117 32 ovsn2 =
118 116 117 eqtr4i · ˙ =
119 simpl1 a = b = c = m = n = a =
120 simpl2 a = b = c = m = n = b =
121 119 120 opeq12d a = b = c = m = n = a b =
122 simpl3 a = b = c = m = n = c =
123 121 122 oveq12d a = b = c = m = n = a b · ˙ c = · ˙
124 37 37 mpoex f 2 𝑜 , g 2 𝑜 f g V
125 2 124 eqeltri · ˙ V
126 125 ovsn2 · ˙ = · ˙
127 123 126 eqtrdi a = b = c = m = n = a b · ˙ c = · ˙
128 simprr a = b = c = m = n = n =
129 simprl a = b = c = m = n = m =
130 127 128 129 oveq123d a = b = c = m = n = n a b · ˙ c m = · ˙
131 121 122 oveq12d a = b = c = m = n = a b c =
132 snex V
133 132 ovsn2 =
134 131 133 eqtrdi a = b = c = m = n = a b c =
135 134 128 129 oveq123d a = b = c = m = n = n a b c m =
136 118 130 135 3eqtr4a a = b = c = m = n = n a b · ˙ c m = n a b c m
137 109 136 sylbi a b c m a J b n b J c n a b · ˙ c m = n a b c m
138 137 adantll a b c m a J b n b J c n a b · ˙ c m = n a b c m
139 85 a1i E Cat
140 18 a1i
141 8 29 52 4 87 88 138 139 140 resccat D Cat E Cat
142 141 mptru D Cat E Cat
143 85 142 mpbir D Cat
144 60 80 143 3pm3.2i J cat H ¬ x S 1 ˙ x x J x D Cat
145 14 17 144 3pm3.2i C Cat J Fn S × S J cat H ¬ x S 1 ˙ x x J x D Cat